skip to main content

Title: Strategies For Pre-training Graph Neural Networks
Many applications of machine learning require a model to make accurate predictions on test examples that are distributionally different from training ones, while task-specific labels are scarce during training. An effective approach to this challenge is to pre-train a model on related tasks where data is abundant, and then fine-tune it on a downstream task of interest. While pre-training has been effective in many language and vision domains, it remains an open question how to effectively use pre-training on graph datasets. In this paper, we develop a new strategy and self-supervised methods for pre-training Graph Neural Networks (GNNs). The key to the success of our strategy is to pre-train an expressive GNN at the level of individual nodes as well as entire graphs so that the GNN can learn useful local and global representations simultaneously. We systematically study pre-training on multiple graph classification datasets. We find that naïve strategies, which pre-train GNNs at the level of either entire graphs or individual nodes, give limited improvement and can even lead to negative transfer on many downstream tasks. In contrast, our strategy avoids negative transfer and improves generalization significantly across downstream tasks, leading up to 9.4% absolute improvements in ROC-AUC over non-pre-trained more » models and achieving state-of-the-art performance for molecular property prediction and protein function prediction. « less
Authors:
; ; ; ; ; ;
Award ID(s):
1835598
Publication Date:
NSF-PAR ID:
10198851
Journal Name:
International Conference on Learning Representations (ICLR)
Sponsoring Org:
National Science Foundation
More Like this
  1. The ability to detect and count certain substructures in graphs is important for solving many tasks on graph-structured data, especially in the contexts of computa- tional chemistry and biology as well as social network analysis. Inspired by this, we propose to study the expressive power of graph neural networks (GNNs) via their ability to count attributed graph substructures, extending recent works that examine their power in graph isomorphism testing and function approximation. We distinguish between two types of substructure counting: induced-subgraph-count and subgraph-count, and establish both positive and negative answers for popular GNN architectures. Specifically, we prove that Message Passing Neural Networks (MPNNs), 2-Weisfeiler-Lehman (2-WL) and 2-Invariant Graph Networks (2-IGNs) cannot perform induced-subgraph-count of any connected substructure consisting of 3 or more nodes, while they can perform subgraph-count of star-shaped sub- structures. As an intermediary step, we prove that 2-WL and 2-IGNs are equivalent in distinguishing non-isomorphic graphs, partly answering an open problem raised in [38]. We also prove positive results for k-WL and k-IGNs as well as negative results for k-WL with a finite number of iterations. We then conduct experiments that support the theoretical results for MPNNs and 2-IGNs. Moreover, motivated by substructure counting and inspired by [45],more »we propose the Local Relational Pooling model and demonstrate that it is not only effective for substructure counting but also able to achieve competitive performance on molecular prediction tasks.« less
  2. Most state-of-the-art Graph Neural Networks (GNNs) can be defined as a form of graph convolution which can be realized by message passing between direct neighbors or beyond. To scale such GNNs to large graphs, various neighbor-, layer-, or subgraph-sampling techniques are proposed to alleviate the "neighbor explosion" problem by considering only a small subset of messages passed to the nodes in a mini-batch. However, sampling-based methods are difficult to apply to GNNs that utilize many-hops-away or global context each layer, show unstable performance for different tasks and datasets, and do not speed up model inference. We propose a principled and fundamentally different approach, VQ-GNN, a universal framework to scale up any convolution-based GNNs using Vector Quantization (VQ) without compromising the performance. In contrast to sampling-based techniques, our approach can effectively preserve all the messages passed to a mini-batch of nodes by learning and updating a small number of quantized reference vectors of global node representations, using VQ within each GNN layer. Our framework avoids the "neighbor explosion" problem of GNNs using quantized representations combined with a low-rank version of the graph convolution matrix. We show that such a compact low-rank version of the gigantic convolution matrix is sufficient both theoreticallymore »and experimentally. In company with VQ, we design a novel approximated message passing algorithm and a nontrivial back-propagation rule for our framework. Experiments on various types of GNN backbones demonstrate the scalability and competitive performance of our framework on large-graph node classification and link prediction benchmarks.« less
  3. Node classification is of great importance among various graph mining tasks. In practice, real-world graphs generally follow the long-tail distribution, where a large number of classes only consist of limited labeled nodes. Although Graph Neural Networks (GNNs) have achieved significant improvements in node classification, their performance decreases substantially in such a few-shot scenario. The main reason can be attributed to the vast generalization gap between meta-training and meta-test due to the task variance caused by different node/class distributions in meta-tasks (i.e., node-level and class-level variance). Therefore, to effectively alleviate the impact of task variance, we propose a task-adaptive node classification framework under the few-shot learning setting. Specifically, we first accumulate meta-knowledge across classes with abundant labeled nodes. Then we transfer such knowledge to the classes with limited labeled nodes via our proposed task-adaptive modules. In particular, to accommodate the different node/class distributions among meta-tasks, we propose three essential modules to perform node-level, class-level, and task-level adaptations in each meta-task, respectively. In this way, our framework can conduct adaptations to different meta-tasks and thus advance the model generalization performance on meta-test tasks. Extensive experiments on four prevalent node classification datasets demonstrate the superiority of our framework over the state-of-the-art baselines. Ourmore »code is provided at https://github.com/SongW-SW/TENT https://github.com/SongW-SW/TENT.« less
  4. The rapid evolution of Graph Neural Networks (GNNs) has led to a growing number of new architectures as well as novel applications. However, current research focuses on proposing and evaluating specific architectural designs of GNNs, such as GCN, GIN, or GAT, as opposed to studying the more general design space of GNNs that consists of a Cartesian product of different design dimensions, such as the number of layers or the type of the aggregation function. Additionally, GNN designs are often specialized to a single task, yet few efforts have been made to understand how to quickly find the best GNN design for a novel task or a novel dataset. Here we define and systematically study the architectural design space for GNNs which consists of 315,000 different designs over 32 different predictive tasks. Our approach features three key innovations: (1) A general GNN design space; (2) a GNN task space with a similarity metric, so that for a given novel task/dataset, we can quickly identify/transfer the best performing architecture; (3) an efficient and effective design space evaluation method which allows insights to be distilled from a huge number of model-task combinations. Our key results include: (1) A comprehensive set of guidelinesmore »for designing well-performing GNNs; (2) while best GNN designs for different tasks vary significantly, the GNN task space allows for transferring the best designs across different tasks; (3) models discovered using our design space achieve state-of-the-art performance. Overall, our work offers a principled and scalable approach to transition from studying individual GNN designs for specific tasks, to systematically studying the GNN design space and the task space. Finally, we release GraphGym, a powerful platform for exploring different GNN designs and tasks. GraphGym features modularized GNN implementation, standardized GNN evaluation, and reproducible and scalable experiment management« less
  5. Graph Neural Networks (GNN) offer the powerful approach to node classification in complex networks across many domains including social media, E-commerce, and FinTech. However, recent studies show that GNNs are vulnerable to attacks aimed at adversely impacting their node classification performance. Existing studies of adversarial attacks on GNN focus primarily on manipulating the connectivity between existing nodes, a task that requires greater effort on the part of the attacker in real-world applications. In contrast, it is much more expedient on the part of the attacker to inject adversarial nodes, e.g., fake profiles with forged links, into existing graphs so as to reduce the performance of the GNN in classifying existing nodes. Hence, we consider a novel form of node injection poisoning attacks on graph data. We model the key steps of a node injection attack, e.g., establishing links between the injected adversarial nodes and other nodes, choosing the label of an injected node, etc. by a Markov Decision Process. We propose a novel reinforcement learning method for Node Injection Poisoning Attacks (NIPA), to sequentially modify the labels and links of the injected nodes, without changing the connectivity between existing nodes. Specifically, we introduce a hierarchical Q-learning network to manipulate themore »labels of the adversarial nodes and their links with other nodes in the graph, and design an appropriate reward function to guide the reinforcement learning agent to reduce the node classification performance of GNN. The results of the experiments show that NIPA is consistently more effective than the baseline node injection attack methods for poisoning graph data on three benchmark datasets.« less