skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 20, 2026

Title: Uncertainty quantification for Markov chains with application to temporal difference learning
Markov chains are fundamental to statistical machine learning, underpinning key methodologies such as Markov Chain Monte Carlo (MCMC) sampling and temporal difference (TD) learning in reinforcement learning (RL). Given their widespread use, it is crucial to establish rigorous probabilistic guarantees on their convergence, uncertainty, and stability. In this work, we develop novel, high-dimensional concentration inequalities and Berry-Esseen bounds for vector- and matrix-valued functions of Markov chains, addressing key limitations in existing theoretical tools for handling dependent data. We leverage these results to analyze the TD learning algorithm, a widely used method for policy evaluation in RL. Our analysis yields a sharp high-probability consistency guarantee that matches the asymptotic variance up to logarithmic factors. Furthermore, we establish a O(T−14logT) distributional convergence rate for the Gaussian approximation of the TD estimator, measured in convex distance. These findings provide new insights into statistical inference for RL algorithms, bridging the gaps between classical stochastic approximation theory and modern reinforcement learning applications.  more » « less
Award ID(s):
2505865
PAR ID:
10631827
Author(s) / Creator(s):
; ;
Publisher / Repository:
stat.ml
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper develops a unified Lyapunov framework for finite-sample analysis of a Markovian stochastic approximation (SA) algorithm under a contraction operator with respect to an arbitrary norm. The main novelty lies in the construction of a valid Lyapunov function called the generalized Moreau envelope. The smoothness and an approximation property of the generalized Moreau envelope enable us to derive a one-step Lyapunov drift inequality, which is the key to establishing the finite-sample bounds. Our SA result has wide applications, especially in the context of reinforcement learning (RL). Specifically, we show that a large class of value-based RL algorithms can be modeled in the exact form of our Markovian SA algorithm. Therefore, our SA results immediately imply finite-sample guarantees for popular RL algorithms such as n-step temporal difference (TD) learning, TD(𝜆), off-policy V-trace, and Q-learning. As byproducts, by analyzing the convergence bounds of n-step TD and TD(𝜆), we provide theoretical insight into the problem about the efficiency of bootstrapping. Moreover, our finite-sample bounds of off-policy V-trace explicitly capture the tradeoff between the variance of the stochastic iterates and the bias in the limit. 
    more » « less
  2. Stochastic Approximation (SA) is a widely used algorithmic approach in various fields, including optimization and reinforcement learning (RL). Among RL algorithms, Q-learning is particularly popular due to its empirical success. In this paper, we study asynchronous Q-learning with constant stepsize, which is commonly used in practice for its fast convergence. By connecting the constant stepsize Q-learning to a time-homogeneous Markov chain, we show the distributional convergence of the iterates in Wasserstein distance and establish its exponential convergence rate. We also establish a Central Limit Theory for Q-learning iterates, demonstrating the asymptotic normality of the averaged iterates. Moreover, we provide an explicit expansion of the asymptotic bias of the averaged iterate in stepsize. Specifically, the bias is proportional to the stepsize up to higher-order terms and we provide an explicit expression for the linear coefficient. This precise characterization of the bias allows the application of Richardson-Romberg (RR) extrapolation technique to construct a new estimate that is provably closer to the optimal Q function. Numerical results corroborate our theoretical finding on the improvement of the RR extrapolation method. 
    more » « less
  3. While there are convergence guarantees for temporal difference (TD) learning when using linear function approximators, the situation for nonlinear models is far less understood, and divergent examples are known. Here we take a first step towards extending theoretical convergence guarantees to TD learning with nonlinear function approximation. More precisely, we consider the expected learning dynamics of the TD(0) algorithm for value estimation. As the step-size converges to zero, these dynamics are defined by a nonlinear ODE which depends on the geometry of the space of function approximators, the structure of the underlying Markov chain, and their interaction. We find a set of function approximators that includes ReLU networks and has geometry amenable to TD learning regardless of environment, so that the solution performs about as well as linear TD in the worst case. Then, we show how environments that are more reversible induce dynamics that are better for TD learning and prove global convergence to the true value function for well-conditioned function approximators. Finally, we generalize a divergent counterexample to a family of divergent problems to demonstrate how the interaction between approximator and environment can go wrong and to motivate the assumptions needed to prove convergence. 
    more » « less
  4. Since reinforcement learning algorithms are notoriously data-intensive, the task of sampling observations from the environment is usually split across multiple agents. However, transferring these observations from the agents to a central location can be prohibitively expensive in terms of the communication cost, and it can also compromise the privacy of each agent’s local behavior policy. In this paper, we consider a federated reinforcement learning framework where multiple agents collaboratively learn a global model, without sharing their individual data and policies. Each agent maintains a local copy of the model and updates it using locally sampled data. Although having N agents enables the sampling of N times more data, it is not clear if it leads to proportional convergence speedup. We propose federated versions of on-policy TD, off-policy TD and Q-learning, and analyze their convergence. For all these algorithms, to the best of our knowledge, we are the first to consider Markovian noise and multiple local updates, and prove a linear convergence speedup with respect to the number of agents. To obtain these results, we show that federated TD and Q-learning are special cases of a general framework for federated stochastic approximation with Markovian noise, and we leverage this framework to provide a unified convergence analysis that applies to all the algorithms. 
    more » « less
  5. Since reinforcement learning algorithms are notoriously data-intensive, the task of sampling observations from the environment is usually split across multiple agents. However, transferring these observations from the agents to a central location can be prohibitively expensive in terms of the communication cost, and it can also compromise the privacy of each agent’s local behavior policy. In this paper, we consider a federated reinforcement learning framework where multiple agents collaboratively learn a global model, without sharing their individual data and policies. Each agent maintains a local copy of the model and updates it using locally sampled data. Although having N agents enables the sampling of N times more data, it is not clear if it leads to proportional convergence speedup. We propose federated versions of on-policy TD, off-policy TD and Q-learning, and analyze their convergence. For all these algorithms, to the best of our knowledge, we are the first to consider Markovian noise and multiple local updates, and prove a linear convergence speedup with respect to the number of agents. To obtain these results, we show that federated TD and Q-learning are special cases of a general framework for federated stochastic approximation with Markovian noise, and we leverage this framework to provide a unified convergence analysis that applies to all the algorithms. 
    more » « less