Purpose: To determine if saliency maps in radiology artificial intelligence (AI) are vulnerable to subtle perturbations of the input, which could potentially lead to misleading interpretations, using Prediction-Saliency Correlation (PSC) for evaluating the sensitivity and robustness of saliency methods. Materials and Methods: In this retrospective study, locally trained deep learning models and a research prototype provided by a commercial vender were systematically evaluated on 191,229 chest radiographs from the CheXpert dataset(1,2) and 7,022 MRI images of human brain tumor classification dataset(3). Two radiologists performed a reader study on 270 chest radiographs pairs. A model-agnostic approach for computing the PSC coefficient was used to evaluate the sensitivity and robustness of seven commonly used saliency methods. Results: Leveraging locally trained model parameters, we revealed the saliency methods’ low sensitivity (maximum PSC = 0.25, 95% CI: 0.12, 0.38) and weak robustness (maximum PSC = 0.12, 95% CI: 0.0, 0.25) on the CheXpert dataset. Without model specifics, we also showed that the saliency maps from a commercial prototype could be irrelevant to the model output (area under the receiver operating characteristic curve dropped by 8.6% without affecting the saliency map). The human observer studies confirmed that is difficult for experts to identify the perturbed images, who had less than 44.8% correctness. Conclusion: Popular saliency methods scored low PSC values on the two datasets of perturbed chest radiographs, indicating weak sensitivity and robustness. The proposed PSC metric provides a valuable quantification tool for validating the trustworthiness of medical AI explainability. Abbreviations: AI = artificial intelligence, PSC = prediction-saliency correlation, AUC = area under the receiver operating characteristic curve, SSIM = structural similarity index measure. Summary: Systematic evaluation of saliency methods through subtle perturbations in chest radiographs and brain MRI images demonstrated low sensitivity and robustness of those methods, warranting caution when using saliency methods that may misrepresent changes in AI model prediction. 
                        more » 
                        « less   
                    
                            
                            Improving Fairness of Automated Chest X-ray Diagnosis by Contrastive Learning
                        
                    
    
            Purpose: Limited studies exploring concrete methods or approaches to tackle and enhance model fairness in the radiology domain. Our proposed AI model utilizes supervised contrastive learning to minimize bias in CXR diagnosis. Materials and Methods: In this retrospective study, we evaluated our proposed method on two datasets: the Medical Imaging and Data Resource Center (MIDRC) dataset with 77,887 CXR images from 27,796 patients collected as of April 20, 2023 for COVID-19 diagnosis, and the NIH Chest X-ray (NIH-CXR) dataset with 112,120 CXR images from 30,805 patients collected between 1992 and 2015. In the NIH-CXR dataset, thoracic abnormalities include atelectasis, cardiomegaly, effusion, infiltration, mass, nodule, pneumonia, pneumothorax, consolidation, edema, emphysema, fibrosis, pleural thickening, or hernia. Our proposed method utilizes supervised contrastive learning with carefully selected positive and negative samples to generate fair image embeddings, which are fine-tuned for subsequent tasks to reduce bias in chest X-ray (CXR) diagnosis. We evaluated the methods using the marginal AUC difference (δ mAUC). Results: The proposed model showed a significant decrease in bias across all subgroups when compared to the baseline models, as evidenced by a paired T-test (p<0.0001). The δ mAUC obtained by our method were 0.0116 (95\% CI, 0.0110-0.0123), 0.2102 (95% CI, 0.2087-0.2118), and 0.1000 (95\% CI, 0.0988-0.1011) for sex, race, and age on MIDRC, and 0.0090 (95\% CI, 0.0082-0.0097) for sex and 0.0512 (95% CI, 0.0512-0.0532) for age on NIH-CXR, respectively. Conclusion: Employing supervised contrastive learning can mitigate bias in CXR diagnosis, addressing concerns of fairness and reliability in deep learning-based diagnostic methods. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2505865
- PAR ID:
- 10631870
- Publisher / Repository:
- https://doi.org/10.48550/arXiv.2401.15111
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Hemanth, Jude (Ed.)Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). Imaging tests such as chest X-ray (CXR) and computed tomography (CT) can provide useful information to clinical staff for facilitating a diagnosis of COVID-19 in a more efficient and comprehensive manner. As a breakthrough of artificial intelligence (AI), deep learning has been applied to perform COVID-19 infection region segmentation and disease classification by analyzing CXR and CT data. However, prediction uncertainty of deep learning models for these tasks, which is very important to safety-critical applications like medical image processing, has not been comprehensively investigated. In this work, we propose a novel ensemble deep learning model through integrating bagging deep learning and model calibration to not only enhance segmentation performance, but also reduce prediction uncertainty. The proposed method has been validated on a large dataset that is associated with CXR image segmentation. Experimental results demonstrate that the proposed method can improve the segmentation performance, as well as decrease prediction uncertainty.more » « less
- 
            Abstract ObjectivesThe predictive intensive care unit (ICU) scoring system is crucial for predicting patient outcomes, particularly mortality. Traditional scoring systems rely mainly on structured clinical data from electronic health records, which can overlook important clinical information in narratives and images. Materials and MethodsIn this work, we build a deep learning-based survival prediction model that utilizes multimodality data for ICU mortality prediction. Four sets of features are investigated: (1) physiological measurements of Simplified Acute Physiology Score (SAPS) II, (2) common thorax diseases predefined by radiologists, (3) bidirectional encoder representations from transformers-based text representations, and (4) chest X-ray image features. The model was evaluated using the Medical Information Mart for Intensive Care IV dataset. ResultsOur model achieves an average C-index of 0.7829 (95% CI, 0.7620-0.8038), surpassing the baseline using only SAPS-II features, which had a C-index of 0.7470 (95% CI: 0.7263-0.7676). Ablation studies further demonstrate the contributions of incorporating predefined labels (2.00% improvement), text features (2.44% improvement), and image features (2.82% improvement). Discussion and ConclusionThe deep learning model demonstrated superior performance to traditional machine learning methods under the same feature fusion setting for ICU mortality prediction. This study highlights the potential of integrating multimodal data into deep learning models to enhance the accuracy of ICU mortality prediction.more » « less
- 
            Koyejo, S.; Mohamed, S.; Agarwal, A.; Belgrave, D.; Cho, K.; Oh, A. (Ed.)Fairness has become an important topic in machine learning. Generally, most literature on fairness assumes that the sensitive information, such as gender or race, is present in the training set, and uses this information to mitigate bias. However, due to practical concerns like privacy and regulation, applications of these methods are restricted. Also, although much of the literature studies supervised learning, in many real-world scenarios, we want to utilize the large unlabelled dataset to improve the model's accuracy. Can we improve fair classification without sensitive information and without labels? To tackle the problem, in this paper, we propose a novel reweighing-based contrastive learning method. The goal of our method is to learn a generally fair representation without observing sensitive attributes.Our method assigns weights to training samples per iteration based on their gradient directions relative to the validation samples such that the average top-k validation loss is minimized. Compared with past fairness methods without demographics, our method is built on fully unsupervised training data and requires only a small labelled validation set. We provide rigorous theoretical proof of the convergence of our model. Experimental results show that our proposed method achieves better or comparable performance than state-of-the-art methods on three datasets in terms of accuracy and several fairness metrics.more » « less
- 
            Fairness has become an important topic in machine learning. Generally, most literature on fairness assumes that the sensitive information, such as gender or race, is present in the training set, and uses this information to mitigate bias. However, due to practical concerns like privacy and regulation, applications of these methods are restricted. Also, although much of the literature studies supervised learning, in many real-world scenarios, we want to utilize the large unlabelled dataset to improve the model's accuracy. Can we improve fair classification without sensitive information and without labels? To tackle the problem, in this paper, we propose a novel reweighing-based contrastive learning method. The goal of our method is to learn a generally fair representation without observing sensitive attributes.Our method assigns weights to training samples per iteration based on their gradient directions relative to the validation samples such that the average top-k validation loss is minimized. Compared with past fairness methods without demographics, our method is built on fully unsupervised training data and requires only a small labelled validation set. We provide rigorous theoretical proof of the convergence of our model. Experimental results show that our proposed method achieves better or comparable performance than state-of-the-art methods on three datasets in terms of accuracy and several fairness metrics.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    