skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: Linking Spatiotemporal b-Value Evolution to Physical Mechanisms Influencing EGS Induced Seismicity
The development and operation of Enhanced Geothermal Systems (EGS) can induce earthquakes during fluid injections, posing significant hazards for both local populations and the continued operation of EGS plants. An improved understanding of the interplay between the physical mechanisms affecting geothermal induced seismicity is important for current and future EGS projects. One way to analyze seismicity is with the b-value, which represents the slope of earthquake magnitude frequency distributions. Previous EGS studies suggest a pore-pressure driven induced seismicity model where spatially – the b-value is high near the injection point and temporally – the b-value decreases during later stages of injection. We evaluate the pore-pressure driven model by comparing the spatiotemporal b-value evolutions of nine different EGS induced seismicity scenarios including Basel and FORGE, along with injections from Soultzsous-Forêts and Cooper Basin. In our spatiotemporal analyses, we find that a majority of examined sequences have a period where the distal b-value is significantly higher than the b-value near the injection point. These sequences indicate that the pore-pressure driven model is inadequate for describing spatiotemporal b-value evolution, and that additional physical mechanisms, like aseismic slip, could have significant effects on EGS induced seismicity. Further characterization of the b-value in EGS induced seismicity sequences provides an opportunity to better constrain the degrees to which different physical mechanisms influence seismicity.  more » « less
Award ID(s):
2315814
PAR ID:
10631921
Author(s) / Creator(s):
;
Publisher / Repository:
GeoScienceWorld
Date Published:
Journal Name:
Seismological Research Letters
Volume:
96
Issue:
2B
ISSN:
0895-0695
Page Range / eLocation ID:
1241 to 1490
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In areas of induced seismicity, earthquakes can be triggered by stress changes due to fluid injection and static deformation from fault slip. Here we present a method to distinguish between injection‐driven and earthquake‐driven triggering of induced seismicity by combining a calibrated, fully coupled, poroelastic stress model of wastewater injection with interpretation of a machine learning algorithm trained on both earthquake catalog and modeled stress features. We investigate seismicity from Paradox Valley, Colorado as an ideal test case: a single, high‐pressure injector that has induced thousands of earthquakes since 1991. Using feature importance analysis, we find that injection‐driven earthquakes are approximately 225% of the total catalog but act as background events that can trigger subsequent aftershocks. Injection‐driven events also have distinct spatiotemporal clustering properties with a larger b‐value, closer proximity to the well, and earlier occurrence in the injection history. Generalization of our technique can help characterize triggering processes in other regions where induced seismicity occurs. 
    more » « less
  2. Abstract Induced seismicity observed during Enhanced Geothermal Stimulation at Otaniemi, Finland is modeled using both statistical and physical approaches. The physical model produces simulations closest to the observations when assuming rate‐and‐state friction for shear failure with diffusivity matching the pressure build‐up at the well‐head at onset of injections. Rate‐and‐state friction implies a time‐dependent earthquake nucleation process which is found to be essential in reproducing the spatial pattern of seismicity. This implies that permeability inferred from the expansion of the seismicity triggering front (Shapiro et al., 1997,https://doi.org/10.1111/j.1365-246x.1997.tb01215.x) can be biased. We suggest a heuristic method to account for this bias that is independent of the earthquake magnitude detection threshold. Our modeling suggests that the Omori law decay during injection shut‐ins results mainly from stress relaxation by pore pressure diffusion. During successive stimulations, seismicity should only be induced where the previous maximum of Coulomb stress changes is exceeded. This effect, commonly referred to as the Kaiser effect, is not clearly visible in the data from Otaniemi. The different injection locations at the various stimulation stages may have resulted in sufficiently different effective stress distributions that the effect was muted. We describe a statistical model whereby seismicity rate is estimated from convolution of the injection history with a kernel which approximates earthquake triggering by fluid diffusion. The statistical method has superior computational efficiency to the physical model and fits the observations as well as the physical model. This approach is applicable provided the Kaiser effect is not strong, as was the case in Otaniemi. 
    more » « less
  3. Abstract Water injection and Enhanced Geothermal System (EGS) technologies have been used to exploit heat resources from geothermal reservoirs. Detecting spatial and temporal changes in reservoir physical properties is important for monitoring reservoir condition changes due to water injection and EGS. Here, we determine high‐resolution models of the temporal changes in the three‐dimensionalPwave velocity and attenuation (Vp and Qp) structures between the years 2005 and 2011 in the northwestern part of The Geysers geothermal field, California, using double‐difference seismic velocity and attenuation tomography. The northwest Geysers has a shallow normal temperature reservoir (NTR) underlain by a high temperature reservoir (HTR) that has substantial underutilized heat resources but may be more fully utilized in the future through EGS. In the southeastern part of the northwest Geysers, however, EGS has been successfully but unintentionally applied for at least 50 years because the waters injected into the NTR have been flowing into the HTR. Our models are well resolved in this area and show that the NTR and HTR have different seismic responses (seismicity, Vp, and Qp) to water injection, which can be explained by the injection‐induced differences in fracturing and saturation that are likely related to their geological properties. Our results indicate that the joint analysis of changes in seismicity, velocity, and attenuation is valuable for characterizing changes in reservoir fracturing and saturation conditions. Our results suggest that high‐permeability zones and/or pre‐existing permeable fault zones are important for the success of EGS at The Geysers and potentially other geothermal systems. 
    more » « less
  4. Abstract We investigate the relative importance of injection and production on the spatial‐temporal distribution of induced seismicity at the Raft River geothermal field. We use time‐series of InSAR measurements to document surface deformation and calibrate a hydro‐mechanical model to estimate effective stress changes imparted by injection and production. Seismicity, located predominantly in the basement, is induced primarily by poroelastic stresses from cold water reinjection into a shallower reservoir. The poroelastic effect of production from a deeper reservoir is minimal and inconsistent with observed seismicity, as is pore‐pressure‐diffusion in the basement and along reactivated faults. We estimate an initial strength excess of ∼20 kPa in the basement and sedimentary cover, but the seismicity rate in the sedimentary cover is four times lower, reflecting lower density of seed‐points for earthquake nucleation. Our modeling workflow could be used to assess the impact of fluid extraction or injection on seismicity and help design or guide operations. 
    more » « less
  5. Foreshocks are the most obvious signature of the earthquake nucleation stage and could, in principle, forewarn of an impending earthquake. However, foreshocks are only sometimes observed, and we have a limited understanding of the physics that controls their occurrence. In this work, we use high-resolution earthquake catalogs and estimates of source properties to understand the spatiotemporal evolution of a sequence of 11 foreshocks that occurred ~ 6.5 hours before the 2020 Mw 4.8 Mentone earthquake in west Texas.  Elevated pore-pressure and poroelastic stressing from subsurface fluid injection from oil-gas operations is often invoked to explain seismicity in west Texas and the surrounding region. However, here we show that static stresses induced from the initial ML 4.0 foreshock significantly perturbed the local shear stress along the fault and could have triggered the Mentone mainshock. The majority (9/11) of the earthquakes leading up to the Mentone mainshock nucleated in areas where the static shear stresses were increased from the initial ML 4.0 foreshock. The spatiotemporal properties of the 11 earthquakes that preceded the mainshock cannot easily be explained in the context of a preslip or cascade nucleation model. We show that at least 6/11 events are better classified as aftershocks of the initial ML 4.0.  Together, our results suggest that a combination of physical mechanisms contributed to the occurrence of the 11 earthquakes that preceded the mainshock, including static-stressing from earthquake-earthquake interactions, aseismic creep, and stress perturbations induced from fluid injection.  Our work highlights the role of earthquake-earthquake triggering in induced earthquake sequences, and suggests that such triggering could help sustain seismic activity following initial stressing perturbations from fluid injection. 
    more » « less