skip to main content


Title: Surface Deformation and Seismicity Induced by Poroelastic Stress at the Raft River Geothermal Field, Idaho, USA
Abstract

We investigate the relative importance of injection and production on the spatial‐temporal distribution of induced seismicity at the Raft River geothermal field. We use time‐series of InSAR measurements to document surface deformation and calibrate a hydro‐mechanical model to estimate effective stress changes imparted by injection and production. Seismicity, located predominantly in the basement, is induced primarily by poroelastic stresses from cold water reinjection into a shallower reservoir. The poroelastic effect of production from a deeper reservoir is minimal and inconsistent with observed seismicity, as is pore‐pressure‐diffusion in the basement and along reactivated faults. We estimate an initial strength excess of ∼20 kPa in the basement and sedimentary cover, but the seismicity rate in the sedimentary cover is four times lower, reflecting lower density of seed‐points for earthquake nucleation. Our modeling workflow could be used to assess the impact of fluid extraction or injection on seismicity and help design or guide operations.

 
more » « less
Award ID(s):
1822214
PAR ID:
10447445
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
18
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Reservoir operations for gas extraction, fluid disposal, carbon dioxide storage, or geothermal energy production are capable of inducing seismicity. Modeling tools exist for seismicity forecasting using operational data, but the computational costs and uncertainty quantification (UQ) pose challenges. We address this issue in the context of seismicity induced by gas production from the Groningen gas field using an integrated modeling framework, which combines reservoir modeling, geomechanical modeling, and stress-based earthquake forecasting. The framework is computationally efficient thanks to a 2D finite-element reservoir model, which assumes vertical flow equilibrium, and the use of semianalytical solutions to calculate poroelastic stress changes and predict seismicity rate. The earthquake nucleation model is based on rate-and-state friction and allows for an initial strength excess so that the faults are not assumed initially critically stressed. We estimate uncertainties in the predicted number of earthquakes and magnitudes. To reduce the computational costs, we assume that the stress model is true, but our UQ algorithm is general enough that the uncertainties in reservoir and stress models could be incorporated. We explore how the selection of either a Poisson or a Gaussian likelihood influences the forecast. We also use a synthetic catalog to estimate the improved forecasting performance that would have resulted from a better seismicity detection threshold. Finally, we use tapered and nontapered Gutenberg–Richter distributions to evaluate the most probable maximum magnitude over time and account for uncertainties in its estimation. Although we did not formally account for uncertainties in the stress model, we tested several alternative stress models, and found negligible impact on the predicted temporal evolution of seismicity and forecast uncertainties. Our study shows that the proposed approach yields realistic estimates of the uncertainties of temporal seismicity and is applicable for operational forecasting or induced seismicity monitoring. It can also be used in probabilistic traffic light systems.

     
    more » « less
  2. Abstract

    Induced seismicity and surface deformation are common observable manifestations of the geomechanical effect of reservoir operations whether related to geothermal energy production, gas extraction or the storage of carbon dioxide, gas, air or hydrogen. Modelling tools to quantitatively predict surface deformation and seismicity based on operation data could thus help manage such reservoirs. To that effect, we present an integrated and modular modelling framework which combines reservoir modelling, geomechanical modelling and earthquake forecasting. To allow effective computational cost, we assume vertical flow equilibrium, semi-analytical Green's functions to calculate surface deformation and poroelastic stresses and a simple earthquake nucleation model based on Coulomb stress changes. We use the test case of the Groningen gas field in the Netherlands to validate the modelling framework and assess its usefulness for reservoir management. For this application, given the relative simplicity of this sandstone reservoir, we assume homogeneous porosity and permeability and single-phase flow. The model fits the measured pressure well, yielding a root mean square error (RMSE) of 0.95 MPa, and the seismicity observations as well. The pressure residuals show, however, a systematic increase with time that probably reflects groundwater ingression into the depleted reservoir. The interaction with groundwater could be accounted for by implementing a multiphase-flow vertical flow equilibrium (VFE) model. This is probably the major factor that limits the general applicability of the modelling framework. Nevertheless, he modelled subsidence and seismicity fit very well the historical observations in the case of the Groningen gas field.

     
    more » « less
  3. Abstract

    Over the past decade, the seismicity rate in the state of Oklahoma has increased significantly, which has been linked to industrial operations, such as saltwater injection and hydraulic fracturing. Taking advantage of induced earthquakes and recently deployed seismometers, we construct a 3‐D radially anisotropic seismic velocity model for the crust of Oklahoma by using full waveform inversion. To mitigate the well‐known cycle‐skipping problem, we use misfit functions based on phase and waveform differences in several frequency bands. Relative velocity perturbations in the inverted model allow us to delineate major geological provinces in Oklahoma, such as the Anadarko Basin and the Cherokee Platform/Shelf. In addition, radial anisotropy in the inverted model reflects deformation within the crust of Oklahoma, which might correlate with sedimentary layering, microcracks/fractures, as well as dominant orientation of anisotropic minerals. The crystalline basement beneath Oklahoma can be inferred from the new velocity model, which enables us to better classify induced seismicity in current earthquake catalogs. Furthermore, synthetic experiments suggest that the new velocity model enables us to better constrain earthquake locations in Oklahoma, especially for determining their depths, which are important for investigating induced seismicity.

     
    more » « less
  4. null (Ed.)
    We present an updated catalogue of seismicity in the Dallas-Fort Worth basin from 2008 to the end of 2019 using state-of-the-art phase picking and association methods based on machine learning. We then calculate the pore pressure and poroelastic stress changes on a monthly basis between 2000 and 2020 for the whole basin, incorporating fluid injection/extraction histories at 104 saltwater injection and 20576 production wells. These pore pressure and poroelastic stress changes are calculated using coupled analytical solutions for a point source injection in a 3D homogeneous isotropic medium, and are superposed for all wells. We suggest that the poroelastic effects of produced gas and water contribute significantly to fault instability. 
    more » « less
  5. Abstract

    Knowledge of aquifer dynamics, including groundwater storage changes, is key to effective groundwater resource and reservoir management. Resolving and accurate modeling of these processes requires knowledge of subsurface poroelastic properties and lateral heterogeneity within units of interest. Computationally demanding methods for determining lateral heterogeneity in poroelastic properties exist but remain difficult to practically employ. The InSAR-based detection of uplift over a New Mexico well with a casing breach provides an opportunity to determine poroelastic properties using a tractable 2D analytical plane strain solution for surface uplift created by a pressurized reservoir with overburden. Using a Bayesian inversion framework, we calculate poroelastic properties under deep (depth of well-screen) and shallow (depth of well-breach) conditions. We find that shallow injection is necessary to produce the observed deformation. However, pressure-varying forward solutions for uplift are required to reproduce the temporal evolution of deformation. For this we use realistic shallow poroelastic properties and well dynamics, which reflect the evolving injection conditions at the well breach as the casing further erodes. Analysis of individual interferograms or InSAR time series may provide insights into shallow subsurface heterogeneity or anomalous injection conditions at operating wells more rapidly than scheduled field inspections.

     
    more » « less