skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Interface Design for Self-Supervised Speech Models
Self-supervised speech (SSL) models have recently become widely adopted for many downstream speech processing tasks. Typically, SSL models are used as feature extractors, with a downstream prediction head trained for a specific task. However, since different layers of SSL models capture different types of information, the methods of combining them remain underexplored. To address this, the authors propose a general framework for SSL model utilization through the concept of an interface that connects the upstream and downstream. Within this view, the common technique of combining features via a layerwise weighted sum is treated as one specific interface. The authors propose several alternative interface designs and show that the weighted sum interface is suboptimal for many tasks. In particular, they demonstrate that a convolutional interface with depth scaling logarithmically with the upstream model’s depth consistently outperforms other designs.  more » « less
Award ID(s):
2505865
PAR ID:
10631929
Author(s) / Creator(s):
;
Publisher / Repository:
https://doi.org/10.48550/arXiv.2406.12209
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Self-supervised learning (SSL) for rich speech representations has achieved empirical success in low-resource Automatic Speech Recognition (ASR) and other speech processing tasks, which can mitigate the necessity of a large amount of transcribed speech and thus has driven a growing demand for on-device ASR and other speech processing. However, advanced speech SSL models have become increasingly large, which contradicts the limited on-device resources. This gap could be more severe in multilingual/multitask scenarios requiring simultaneously recognizing multiple languages or executing multiple speech processing tasks. Additionally, strongly overparameterized speech SSL models tend to suffer from overfitting when being finetuned on low-resource speech corpus. This work aims to enhance the practical usage of speech SSL models towards a win-win in both enhanced efficiency and alleviated overfitting via our proposed S-Router framework, which for the first time discovers that simply discarding no more than 10% of model weights via only finetuning model connections of speech SSL models can achieve better accuracy over standard weight finetuning on downstream speech processing tasks. More importantly, S-Router can serve as an all-in-one technique to enable (1) a new finetuning scheme, (2) an efficient multilingual/multitask solution, (3) a state-of-the-art pruning technique, and (4) a new tool to quantitatively analyze the learned speech representation. 
    more » « less
  2. N/A (Ed.)
    This study is focused on understanding and quantifying the change in phoneme and prosody information encoded in the Self-Supervised Learning (SSL) model, brought by an accent identification (AID) fine-tuning task. This problem is addressed based on model probing. Specifically, we conduct a systematic layer-wise analysis of the representations of the Transformer layers on a phoneme correlation task, and a novel word-level prosody prediction task. We compare the probing performance of the pre-trained and fine-tuned SSL models. Results show that the AID fine-tuning task steers the top 2 layers to learn richer phoneme and prosody representation. These changes share some similarities with the effects of fine-tuning with an Automatic Speech Recognition task. In addition, we observe strong accent-specific phoneme representations in layer 9. To sum up, this study provides insights into the understanding of SSL features and their interactions with fine-tuning tasks. 
    more » « less
  3. Speech emotion recognition (SER) is a challenging task due to the limited availability of real-world labeled datasets. Since it is easier to find unlabeled data, the use of self-supervised learning (SSL) has become an attractive alternative. This study proposes new pre-text tasks for SSL to improve SER. While our target application is SER, the proposed pre-text tasks include audio-visual formulations, leveraging the relationship between acoustic and facial features. Our proposed approach introduces three new unimodal and multimodal pre-text tasks that are carefully designed to learn better representations for predicting emotional cues from speech. Task 1 predicts energy variations (high or low) from a speech sequence. Task 2 uses speech features to predict facial activation (high or low) based on facial landmark movements. Task 3 performs a multi-class emotion recognition task on emotional labels obtained from combinations of action units (AUs) detected across a video sequence. We pre-train a network with 60.92 hours of unlabeled data, fine-tuning the model for the downstream SER task. The results on the CREMA-D dataset show that the model pre-trained on the proposed domain-specific pre-text tasks significantly improves the precision (up to 5.1%), recall (up to 4.5%), and F1-scores (up to 4.9%) of our SER system. 
    more » « less
  4. This paper presents a domain-guided approach for learning representations of scalp-electroencephalograms (EEGs) without relying on expert annotations. Expert labeling of EEGs has proven to be an unscalable process with low inter-reviewer agreement because of the complex and lengthy nature of EEG recordings. Hence, there is a need for machine learning (ML) approaches that can leverage expert domain knowledge without incurring the cost of labor-intensive annotations. Self-supervised learning (SSL) has shown promise in such settings, although existing SSL efforts on EEG data do not fully exploit EEG domain knowledge. Furthermore, it is unclear to what extent SSL models generalize to unseen tasks and datasets. Here we explore whether SSL tasks derived in a domain-guided fashion can learn generalizable EEG representations. Our contributions are three-fold: 1) we propose novel SSL tasks for EEG based on the spatial similarity of brain activity, underlying behavioral states, and age-related differences; 2) we present evidence that an encoder pretrained using the proposed SSL tasks shows strong predictive performance on multiple downstream classifications; and 3) using two large EEG datasets, we show that our encoder generalizes well to multiple EEG datasets during downstream evaluations. 
    more » « less
  5. Self-supervised learning (SSL) is at the core of training modern large machine learning models, providing a scheme for learning powerful representations that can be used in a variety of downstream tasks. However, SSL strategies must be adapted to the type of training data and downstream tasks required. We propose resimulation-based self-supervised representation learning (RS3L), a novel simulation-based SSL strategy that employs a method of to drive data augmentation for contrastive learning in the physical sciences, particularly, in fields that rely on stochastic simulators. By intervening in the middle of the simulation process and rerunning simulation components downstream of the intervention, we generate multiple realizations of an event, thus producing a set of augmentations covering all physics-driven variations available in the simulator. Using experiments from high-energy physics, we explore how this strategy may enable the development of a foundation model; we show how RS3L pretraining enables powerful performance in downstream tasks such as discrimination of a variety of objects and uncertainty mitigation. In addition to our results, we make the RS3L dataset publicly available for further studies on how to improve SSL strategies. Published by the American Physical Society2025 
    more » « less