Label differential privacy is a relaxation of differential privacy for machine learning scenarios where the labels are the only sensitive information that needs to be protected in the training data. For example, imagine a survey from a participant in a university class about their vaccination status. Some attributes of the students are publicly available but their vaccination status is sensitive information and must remain private. Now if we want to train a model that predicts whether a student has received vaccination using only their public information, we can use label-DP. Recent works on label-DP use different ways of adding noise to the labels in order to obtain label-DP models. In this work, we present novel techniques for training models with label-DP guarantees by leveraging unsupervised learning and semi-supervised learning, enabling us to inject less noise while obtaining the same privacy, therefore achieving a better utility-privacy trade-off. We first introduce a framework that starts with an unsupervised classifier f0 and dataset D with noisy label set Y , reduces the noise in Y using f0 , and then trains a new model f using the less noisy dataset. Our noise reduction strategy uses the model f0 to remove the noisy labels that are incorrect with high probability. Then we use semi-supervised learning to train a model using the remaining labels. We instantiate this framework with multiple ways of obtaining the noisy labels and also the base classifier. As an alternative way to reduce the noise, we explore the effect of using unsupervised learning: we only add noise to a majority voting step for associating the learned clusters with a cluster label (as opposed to adding noise to individual labels); the reduced sensitivity enables us to add less noise. Our experiments show that these techniques can significantly outperform the prior works on label-DP. 
                        more » 
                        « less   
                    This content will become publicly available on May 7, 2026
                            
                            Retraining with Predicted Hard Labels Provably Increases Model Accuracy
                        
                    
    
            Training with noisy labels often yields suboptimal performance, but retraining a model with its own predicted hard labels (binary 1/0 outputs) has been empirically shown to improve accuracy. This paper provides the first theoretical characterization of this phenomenon. In the setting of linearly separable binary classification with randomly corrupted labels, the authors prove that retraining can indeed improve the population accuracy compared to initial training with noisy labels. Retraining also has practical implications for local label differential privacy (DP), where models are trained with noisy labels. The authors propose consensus-based retraining, where retraining is done selectively on samples for which the predicted label matches the given noisy label. This approach significantly improves DP training accuracy at no additional privacy cost. For example, training ResNet-18 on CIFAR-100 with ε = 3 label DP achieves over 6% accuracy improvement with consensus-based retraining. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2505865
- PAR ID:
- 10631934
- Publisher / Repository:
- https://doi.org/10.48550/arXiv.2406.11206
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Federated learning (FL) is a learning paradigm that allows the central server to learn from different data sources while keeping the data private locally. Without controlling and monitoring the local data collection process, the locally available training labels are likely noisy, i.e., the collected training labels differ from the unobservable ground truth. Additionally, in heterogenous FL, each local client may only have access to a subset of label space (referred to as openset label learning), meanwhile without overlapping with others. In this work, we study the challenge of FL with local openset noisy labels. We observe that many existing solutions in the noisy label literature, e.g., loss correction, are ineffective during local training due to overfitting to noisy labels and being not generalizable to openset labels. For the methods in FL, different estimated metrics are shared. To address the problems, we design a label communication mechanism that shares "contrastive labels" randomly selected from clients with the server. The privacy of the shared contrastive labels is protected by label differential privacy (DP). Both the DP guarantee and the effectiveness of our approach are theoretically guaranteed. Compared with several baseline methods, our solution shows its efficiency in several public benchmarks and real-world datasets under different noise ratios and noise models.more » « less
- 
            Globerson, A; Mackey, L; Belgrave, D; Fan, A; Paquet, U; Tomczak, J; Zhang, C (Ed.)Last-layer retraining methods have emerged as an efficient framework for correcting existing base models. Within this framework, several methods have been proposed to deal with correcting models for subgroup fairness with and without group membership information. Importantly, prior work has demonstrated that many methods are susceptible to noisy labels. To this end, we propose a drop-in correction for label noise in last-layer retraining, and demonstrate that it achieves state-ofthe-art worst-group accuracy for a broad range of symmetric label noise and across a wide variety of datasets exhibiting spurious correlations. Our proposed approach uses label spreading on a latent nearest neighbors graph and has minimal computational overhead compared to existing methods.more » « less
- 
            Producing high-quality labeled data is a challenge in any supervised learning problem, where in many cases, human involvement is necessary to ensure the label quality. However, human annotations are not flawless, especially in the case of a challenging problem. In nontrivial problems, the high disagreement among annotators results in noisy labels, which affect the performance of any machine learning model. In this work, we consider three noise reduction strategies to improve the label quality in the Article-Comment Alignment Problem, where the main task is to classify article-comment pairs according to their relevancy level. The first considered labeling disagreement reduction strategy utilizes annotators' background knowledge during the label aggregation step. The second strategy utilizes user disagreement during the training process. In the third and final strategy, we ask annotators to perform corrections and relabel the examples with noisy labels. We deploy these strategies and compare them to a resampling strategy for addressing the class imbalance, another common supervised learning challenge. These alternatives were evaluated on ACAP, a multiclass text pairs classification problem with highly imbalanced data, where one of the classes represents at most 15% of the dataset's entire population. Our results provide evidence that considered strategies can reduce disagreement between annotators. However, data quality improvement is insufficient to enhance classification accuracy in the article-comment alignment problem, which exhibits a high-class imbalance. The model performance is enhanced for the same problem by addressing the imbalance issue with a weight loss-based class distribution resampling. We show that allowing the model to pay more attention to the minority class during the training process with the presence of noisy examples improves the test accuracy by 3%.more » « less
- 
            Recent relation extraction (RE) works have shown encouraging improvements by conducting contrastive learning on silver labels generated by distant supervision before fine-tuning on gold labels. Existing methods typically assume all these silver labels are accurate and treat them equally; however, distant supervision is inevitably noisy–some silver labels are more reliable than others. In this paper, we propose fine-grained contrastive learning (FineCL) for RE, which leverages fine-grained information about which silver labels are and are not noisy to improve the quality of learned relationship representations for RE. We first assess the quality of silver labels via a simple and automatic approach we call “learning order denoising,” where we train a language model to learn these relations and record the order of learned training instances. We show that learning order largely corresponds to label accuracy–early-learned silver labels have, on average, more accurate labels than later-learned silver labels. Then, during pre-training, we increase the weights of accurate labels within a novel contrastive learning objective. Experiments on several RE benchmarks show that FineCL makes consistent and significant performance gains over state-of-the-art methods.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
