skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 10, 2026

Title: A statistically stationary minimal flow unit for self-similar Rayleigh–Taylor turbulence in the mode-coupling limit
We propose a computational framework for simulating the self-similar regime of turbulent Rayleigh–Taylor (RT) mixing layers in a statistically stationary manner. By leveraging the anticipated self-similar behaviour of RT mixing layers, a transformation of the vertical coordinate and velocities is applied to the Navier–Stokes equations (NSE), yielding modified equations that resemble the original NSE but include two sets of additional terms. Solving these equations, a statistically stationary RT (SRT) flow is achieved. Unlike temporally growing Rayleigh–Taylor (TRT) flow, SRT flow is independent of initial conditions and can be simulated over infinite simulation time without escalating resolution requirements, hence guaranteeing statistical convergence. Direct numerical simulations (DNS) are performed at an Atwood number of 0.5 and unity Schmidt number. By varying the ratio of the mixing layer height to the domain width, a minimal flow unit of aspect ratio 1.5 is found to approximate TRT turbulence in the self-similar mode-coupling regime. The SRT minimal flow unit has one-sixteenth the number of grid points required by the equivalent TRT simulation of the same Reynolds number and grid resolution. The resultant flow corresponds to a theoretical limit where self-similarity is observed in all fields and across the entire spatial domain – a late-time state that existing experiments and DNS of TRT flow have difficulties attaining. Simulations of the SRT minimal flow unit span TRT-equivalent Reynolds numbers (based on mixing layer height) ranging from 500 to 10 800. The SRT results are validated against TRT data from this study as well as from Cabot & Cook (Nat. Phys., vol. 2, 2006, pp. 562–568).  more » « less
Award ID(s):
2422513
PAR ID:
10631937
Author(s) / Creator(s):
;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
1002
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Direct Numerical Simulation (DNS) of compressible spatially-developing turbulent boundary layers (SDTBL) is performed at a Mach number of 2.5 and low/high Reynolds numbers over isothermal Zero-Pressure Gradient (ZPG) flat plates. Turbulent inflow information is generated via a dynamic rescaling-recycling approach (J. Fluid Mech., 670, pp. 581-605, 2011), which avoids the use of empirical correlations in the computation of inlet turbulent scales. The range of the low Reynolds number case is approximately 400-800, based on the momentum thickness, freestream velocity and wall viscosity. DNS at higher Reynolds numbers (~3,000, about four-fold larger) is also carried out with the purpose of analyzing the effect of Reynolds number on the transport phenomena in the supersonic regime. Additionally, low/high order flow statistics are compared with DNS of an incompressible isothermal ZPG boundary layer at similar low Reynolds numbers and the temperature regarded as a passive scalar. Peaks of turbulence intensities move closer to the wall as the Reynolds number increases in the supersonic flat plate. Furthermore, Reynolds shear stresses depict a much larger "plateau" (constant shear layer) at the highest Reynolds number considered in present study. 
    more » « less
  2. A numerical investigation of an asymptotically reduced model for quasigeostrophic Rayleigh-Bénard convection is conducted in which the depth-averaged flows are numerically suppressed by modifying the governing equations. At the largest accessible values of the Rayleigh number Ra, the Reynolds number and Nusselt number show evidence of approaching the diffusion-free scalings of Re ∼ RaE/Pr and Nu ∼ Pr−1/2Ra3/2E2, respectively, where E is the Ekman number and Pr is the Prandtl number. For large Ra, the presence of depth-invariant flows, such as large-scale vortices, yield heat and momentum transport scalings that exceed those of the diffusion-free scaling laws. The Taylor microscale does not vary significantly with increasing Ra, whereas the integral length scale grows weakly. The computed length scales remain O(1) with respect to the linearly unstable critical wave number; we therefore conclude that these scales remain viscously controlled. We do not find a point-wise Coriolis-inertia-Archimedean (CIA) force balance in the turbulent regime; interior dynamics are instead dominated by horizontal advection (inertia), vortex stretching (Coriolis) and the vertical pressure gradient. A secondary, subdominant balance between the Archimedean buoyancy force and the viscous force occurs in the interior and the ratio of the root mean square (rms) of these two forces is found to approach unity with increasing Ra. This secondary balance is attributed to the turbulent fluid interior acting as the dominant control on the heat transport. These findings indicate that a pointwise CIA balance does not occur in the high Rayleigh number regime of quasigeostrophic convection in the plane layer geometry. Instead, simulations are characterized by what may be termed a nonlocal CIA balance in which the buoyancy force is dominant within the thermal boundary layers and is spatially separated from the interior Coriolis and inertial forces. 
    more » « less
  3. Convection is a ubiquitous process driving geophysical/astrophysical fluid flows, which are typically strongly constrained by planetary rotation on large scales. A celebrated model of such flows, rapidly rotating Rayleigh-Bénard convection, has been extensively studied in direct numerical simulations (DNS) and laboratory experiments, but the parameter values attainable by state-of-the-art methods are limited to moderately rapid rotation (Ekman numbers Ek≳10−8), while realistic geophysical/astrophysical Ek are significantly smaller. Asymptotically reduced equations of motion, the nonhydrostatic quasi-geostrophic equations (NHQGE), describing the flow evolution in the limit Ek→0, do not apply at finite rotation rates. The geophysical/astrophysical regime of small but finite Ek therefore remains currently inaccessible. Here, we introduce a new, numerically advantageous formulation of the Navier-Stokes-Boussinesq equations informed by the scalings valid for Ek→0, the \textit{Rescaled Rapidly Rotating incompressible Navier-Stokes Equations} (RRRiNSE). We solve the RRRiNSE using a spectral quasi-inverse method resulting in a sparse, fast algorithm to perform efficient DNS in this previously unattainable parameter regime. We validate our results against the literature across a range of Ek and demonstrate that the algorithmic approaches taken remain accurate and numerically stable at Ek as low as 10−15. Like the NHQGE, the RRRiNSE derive their efficiency from adequate conditioning, eliminating spurious growing modes that otherwise induce numerical instabilities at small Ek. We show that the time derivative of the mean temperature is inconsequential for accurately determining the Nusselt number in the stationary state, significantly reducing the required simulation time, and demonstrate that full DNS using RRRiNSE agree with the NHQGE at very small Ek. 
    more » « less
  4. Since Taylor’s seminal paper, the existence of large-scale quasi-axisymmetric structures has been a matter of interest when studying Taylor–Couette flow. In this article, we probe their formation in the highly turbulent regime by conducting a series of numerical simulations at a fixed Reynolds number Re s = 3.6 × 10 4 while varying the Coriolis parameter to analyse the flow characteristics as the structures arise and dissipate. We show how the Coriolis force induces a one-way coupling between the radial and azimuthal velocity fields inside the boundary layer, but in the bulk, there is a two-way coupling that causes competing effects. We discuss how this complicates the analogy of narrow-gap Taylor–Couette to other convective flows. We then compare these statistics with a similar shear flow without no-slip boundary layers, showing how this double coupling causes very different effects. We finish by reflecting on the possible origins of turbulent Taylor rolls. This article is part of the theme issue ‘Taylor–Couette and related flows on the centennial of Taylor’s seminal Philosophical Transactions paper (part 1)’. 
    more » « less
  5. The relative velocities and positions of monodisperse high-inertia particle pairs in isotropic turbulence are studied using direct numerical simulations (DNS), as well as Langevin simulations (LS) based on a probability density function (PDF) kinetic model for pair relative motion. In a prior study (Rani et al. , J. Fluid Mech. , vol. 756, 2014, pp. 870–902), the authors developed a stochastic theory that involved deriving closures in the limit of high Stokes number for the diffusivity tensor in the PDF equation for monodisperse particle pairs. The diffusivity contained the time integral of the Eulerian two-time correlation of fluid relative velocities seen by pairs that are nearly stationary. The two-time correlation was analytically resolved through the approximation that the temporal change in the fluid relative velocities seen by a pair occurs principally due to the advection of smaller eddies past the pair by large-scale eddies. Accordingly, two diffusivity expressions were obtained based on whether the pair centre of mass remained fixed during flow time scales, or moved in response to integral-scale eddies. In the current study, a quantitative analysis of the (Rani et al. 2014) stochastic theory is performed through a comparison of the pair statistics obtained using LS with those from DNS. LS consist of evolving the Langevin equations for pair separation and relative velocity, which is statistically equivalent to solving the classical Fokker–Planck form of the pair PDF equation. Langevin simulations of particle-pair dispersion were performed using three closure forms of the diffusivity – i.e. the one containing the time integral of the Eulerian two-time correlation of the seen fluid relative velocities and the two analytical diffusivity expressions. In the first closure form, the two-time correlation was computed using DNS of forced isotropic turbulence laden with stationary particles. The two analytical closure forms have the advantage that they can be evaluated using a model for the turbulence energy spectrum that closely matched the DNS spectrum. The three diffusivities are analysed to quantify the effects of the approximations made in deriving them. Pair relative-motion statistics obtained from the three sets of Langevin simulations are compared with the results from the DNS of (moving) particle-laden forced isotropic turbulence for $$St_{\unicode[STIX]{x1D702}}=10,20,40,80$$ and $$Re_{\unicode[STIX]{x1D706}}=76,131$$ . Here, $$St_{\unicode[STIX]{x1D702}}$$ is the particle Stokes number based on the Kolmogorov time scale and $$Re_{\unicode[STIX]{x1D706}}$$  is the Taylor micro-scale Reynolds number. Statistics such as the radial distribution function (RDF), the variance and kurtosis of particle-pair relative velocities and the particle collision kernel were computed using both Langevin and DNS runs, and compared. The RDFs from the stochastic runs were in good agreement with those from the DNS. Also computed were the PDFs $$\unicode[STIX]{x1D6FA}(U|r)$$ and $$\unicode[STIX]{x1D6FA}(U_{r}|r)$$ of relative velocity $$U$$ and of the radial component of relative velocity $$U_{r}$$ respectively, both PDFs conditioned on separation $$r$$ . The first closure form, involving the Eulerian two-time correlation of fluid relative velocities, showed the best agreement with the DNS results for the PDFs. 
    more » « less