Quantum error correction codes (QECCs) are essential for reliable quantum computing as they protect quantum states against noise and errors. Limited research has explored the resilience of QECCs to biased noise, critical for selecting optimal codes. We examine how different noise types impact QECCs, considering the varying susceptibility of quantum systems to specific errors. Our goal is to identify opportunities to minimize the resources—or overhead—needed for effective error correction. We conduct a detailed study on two QECCs—rotated and unrotated surface codes—under various noise models using simulations. Rotated surface codes generally perform better due to their simplicity and lower qubit overhead. They exceed the noise threshold of current quantum processors, making them more effective at lower error rates. This study highlights a hierarchy in surface code implementation based on resource demand, consistently observed across both code types. Our analysis ranks the code-capacity model as the most pessimistic and the circuit-level model as the most realistic, mapping error thresholds that show surface code advantages. Additionally, higher code distances improve performance without excessively increasing qubit overhead. Tailoring surface codes to align with the target logical error rate and the biased physical error profile is crucial for optimizing reliability and resource use. 
                        more » 
                        « less   
                    This content will become publicly available on March 1, 2026
                            
                            Lattice Surgery for Dummies
                        
                    
    
            Quantum error correction (QEC) plays a crucial role in correcting noise and paving the way for fault-tolerant quantum computing. This field has seen significant advancements, with new quantum error correction codes emerging regularly to address errors effectively. Among these, topological codes, particularly surface codes, stand out for their low error thresholds and feasibility for implementation in large-scale quantum computers. However, these codes are restricted to encoding a single qubit. Lattice surgery is crucial for enabling interactions among multiple encoded qubits or between the lattices of a surface code, ensuring that its sophisticated error-correcting features are maintained without significantly increasing the operational overhead. Lattice surgery is pivotal for scaling QECCs across more extensive quantum systems. Despite its critical importance, comprehending lattice surgery is challenging due to its inherent complexity, demanding a deep understanding of intricate quantum physics and mathematical concepts. This paper endeavors to demystify lattice surgery, making it accessible to those without a profound background in quantum physics or mathematics. This work explores surface codes, introduces the basics of lattice surgery, and demonstrates its application in building quantum gates and emulating multi-qubit circuits. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10632017
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Sensors
- Volume:
- 25
- Issue:
- 6
- ISSN:
- 1424-8220
- Page Range / eLocation ID:
- 1854
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Quantum computers have the potential to provide exponential speedups over their classical counterparts. Quantum principles are being applied to fields such as communications, information processing, and artificial intelligence to achieve quantum advantage. However, quantum bits are extremely noisy and prone to decoherence. Thus, keeping the qubits error free is extremely important toward reliable quantum computing. Quantum error correcting codes have been studied for several decades and methods have been proposed to import classical error correcting codes to the quantum domain. Along with the exploration into novel and more efficient quantum error correction codes, it is also essential to design circuits for practical realization of these codes. This paper serves as a tutorial on designing and simulating quantum encoder and decoder circuits for stabilizer codes. We first describe Shor’s 9-qubit code which was the first quantum error correcting code. We discuss the stabilizer formalism along with the design of encoding and decoding circuits for stabilizer codes such as the five-qubit code and Steane code. We also design nearest neighbor compliant circuits for the above codes. The circuits were simulated and verified using IBM Qiskit.more » « less
- 
            Quantum error correction (QEC) is believed to be essential for the realization of large-scale quantum computers. However, due to the complexity of operating on the encoded `logical' qubits, understanding the physical principles for building fault-tolerant quantum devices and combining them into efficient architectures is an outstanding scientific challenge. Here we utilize reconfigurable arrays of up to 448 neutral atoms to implement all key elements of a universal, fault-tolerant quantum processing architecture and experimentally explore their underlying working mechanisms. We first employ surface codes to study how repeated QEC suppresses errors, demonstrating 2.14(13)x below-threshold performance in a four-round characterization circuit by leveraging atom loss detection and machine learning decoding. We then investigate logical entanglement using transversal gates and lattice surgery, and extend it to universal logic through transversal teleportation with 3D [[15,1,3]] codes, enabling arbitrary-angle synthesis with logarithmic overhead. Finally, we develop mid-circuit qubit re-use, increasing experimental cycle rates by two orders of magnitude and enabling deep-circuit protocols with dozens of logical qubits and hundreds of logical teleportations with [[7,1,3]] and high-rate [[16,6,4]] codes while maintaining constant internal entropy. Our experiments reveal key principles for efficient architecture design, involving the interplay between quantum logic and entropy removal, judiciously using physical entanglement in logic gates and magic state generation, and leveraging teleportations for universality and physical qubit reset. These results establish foundations for scalable, universal error-corrected processing and its practical implementation with neutral atom systems.more » « less
- 
            One-way quantum repeaters where loss and operational errors are counteracted by quantum error-correcting codes can ensure fast and reliable qubit transmission in quantum networks. It is crucial that the resource requirements of such repeaters, for example, the number of qubits per repeater node and the complexity of the quantum error-correcting operations are kept to a minimum to allow for near-future implementations. To this end, we propose a one-way quantum repeater that targets both the loss and operational error rates in a communication channel in a resource-efficient manner using code concatenation. Specifically, we consider a tree-cluster code as an inner loss-tolerant code concatenated with an outer 5-qubit code for protection against Pauli errors. Adopting flag-based stabilizer measurements, we show that intercontinental distances of up to 10,000 km can be bridged with a minimized resource overhead by interspersing repeater nodes that each specialize in suppressing either loss or operational errors. Our work demonstrates how tailored error-correcting codes can significantly lower the experimental requirements for long-distance quantum communication.more » « less
- 
            Abstract Quantum systems can be used to measure various quantities in their environment with high precision. Often, however, their sensitivity is limited by the decohering effects of this same environment. Dynamical decoupling schemes are widely used to filter environmental noise from signals, but their performance is limited by the spectral properties of the signal and noise at hand. Quantum error correction schemes have therefore emerged as a complementary technique without the same limitations. To date, however, they have failed to correct the dominant noise type in many quantum sensors, which couples to each qubit in a sensor in the same way as the signal. Here we show how quantum error correction can correct for such noise, which dynamical decoupling can only partially address. Whereas dynamical decoupling exploits temporal noise correlations in signal and noise, our scheme exploits spatial correlations. We give explicit examples in small quantum devices and demonstrate a method by which error-correcting codes can be tailored to their noise.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
