skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantum Circuits for Stabilizer Error Correcting Codes: A Tutorial
Quantum computers have the potential to provide exponential speedups over their classical counterparts. Quantum principles are being applied to fields such as communications, information processing, and artificial intelligence to achieve quantum advantage. However, quantum bits are extremely noisy and prone to decoherence. Thus, keeping the qubits error free is extremely important toward reliable quantum computing. Quantum error correcting codes have been studied for several decades and methods have been proposed to import classical error correcting codes to the quantum domain. Along with the exploration into novel and more efficient quantum error correction codes, it is also essential to design circuits for practical realization of these codes. This paper serves as a tutorial on designing and simulating quantum encoder and decoder circuits for stabilizer codes. We first describe Shor’s 9-qubit code which was the first quantum error correcting code. We discuss the stabilizer formalism along with the design of encoding and decoding circuits for stabilizer codes such as the five-qubit code and Steane code. We also design nearest neighbor compliant circuits for the above codes. The circuits were simulated and verified using IBM Qiskit.  more » « less
Award ID(s):
1954749
PAR ID:
10501725
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE circuits and systems magazine
ISSN:
1531-636X
Subject(s) / Keyword(s):
Quantum ECCs, Quantum computation, Steane code, CSS code, Stabilizer codes, Quantum encoders and de- coders, Syndrome measurement, Nearest neighbor compliant circuits
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Quantum computing is an emerging technology that has the potential to achieve exponential speedups over their classical counterparts. To achieve quantum advantage, quantum principles are being applied to fields such as communications, information processing, and artificial intelligence. However, quantum computers face a fundamental issue since quantum bits are extremely noisy and prone to decoherence. Keeping qubits error free is one of the most important steps towards reliable quantum computing. Different stabilizer codes for quantum error correction have been proposed in past decades and several methods have been proposed to import classical error correcting codes to the quantum domain. Design of encoding and decoding circuits for the stabilizer codes have also been proposed. Optimization of these circuits in terms of the number of gates is critical for reliability of these circuits. In this paper, we propose a procedure for optimization of encoder circuits for stabilizer codes. Using the proposed method, we optimize the encoder circuit in terms of the number of 2-qubit gates used. The proposed optimized eight-qubit encoder uses 18 CNOT gates and 4 Hadamard gates, as compared to 14 single qubit gates, 33 2-qubit gates, and 6 CCNOT gates in a prior work. The encoder and decoder circuits are verified using IBM Qiskit. We also present encoder circuits for the Steane code and a 13-qubit code, that are optimized with respect to the number of gates used, leading to a reduction in number of CNOT gates by 1 and 8, respectively. 
    more » « less
  2. Entanglement is essential for quantum information processing, but is limited by noise. We address this by developing high-yield entanglement distillation protocols with several advancements. (1) We extend the 2-to-1 recurrence entanglement distillation protocol to higher-rate n-to-(n−1) protocols that can correct any single-qubit errors. These protocols are evaluated through numerical simulations focusing on fidelity and yield. We also outline a method to adapt any classical error-correcting code for entanglement distillation, where the code can correct both bit-flip and phase-flip errors by incorporating Hadamard gates. (2) We propose a constant-depth decoder for stabilizer codes that transforms logical states into physical ones using single-qubit measurements. This decoder is applied to entanglement distillation protocols, reducing circuit depth and enabling protocols derived from high-performance quantum error-correcting codes. We demonstrate this by evaluating the circuit complexity for entanglement distillation protocols based on surface codes and quantum convolutional codes. (3) Our stabilizer entanglement distillation techniques advance quantum computing. We propose a fault-tolerant protocol for constant-depth encoding and decoding of arbitrary states in surface codes, with potential extensions to more general quantum low-density parity-check codes. This protocol is feasible with state-of-the-art reconfigurable atom arrays and surpasses the limits of conventional logarithmic depth encoders. Overall, our study integrates stabilizer formalism, measurement-based quantum computing, and entanglement distillation, advancing both quantum communication and computing. 
    more » « less
  3. Concatenating bosonic error-correcting codes with qubit codes can substantially boost the error correcting power of the original qubit codes. It is not clear how to concatenate optimally, given that there are several bosonic codes and concatenation schemes to choose from, including the recently discovered Gottesman-Kitaev-Preskill (GKP) – stabilizer codes [Phys. Rev. Lett. 125, 080503 (2020)] that allow protection of a logical bosonic mode from fluctuations of the conjugate variables of the mode. We develop efficient maximum-likelihood decoders for and analyze the performance of three different concatenations of codes taken from the following set: qubit stabilizer codes, analog or Gaussian stabilizer codes, GKP codes, and GKP-stabilizer codes. We benchmark decoder performance against additive Gaussian white noise, corroborating our numerics with analytical calculations. We observe that the concatenation involving GKP-stabilizer codes outperforms the more conventional concatenation of a qubit stabilizer code with a GKP code in some cases. We also propose a GKP-stabilizer code that suppresses fluctuations in both conjugate variables without extra quadrature squeezing and formulate qudit versions of GKP-stabilizer codes. 
    more » « less
  4. One-way quantum repeaters where loss and operational errors are counteracted by quantum error-correcting codes can ensure fast and reliable qubit transmission in quantum networks. It is crucial that the resource requirements of such repeaters, for example, the number of qubits per repeater node and the complexity of the quantum error-correcting operations are kept to a minimum to allow for near-future implementations. To this end, we propose a one-way quantum repeater that targets both the loss and operational error rates in a communication channel in a resource-efficient manner using code concatenation. Specifically, we consider a tree-cluster code as an inner loss-tolerant code concatenated with an outer 5-qubit code for protection against Pauli errors. Adopting flag-based stabilizer measurements, we show that intercontinental distances of up to 10,000 km can be bridged with a minimized resource overhead by interspersing repeater nodes that each specialize in suppressing either loss or operational errors. Our work demonstrates how tailored error-correcting codes can significantly lower the experimental requirements for long-distance quantum communication. 
    more » « less
  5. Generalized bicycle (GB) codes is a class of quantum error-correcting codes constructed from a pair of binary circulant matrices. Unlike for other simple quantum code ansätze, unrestricted GB codes may have linear distance scaling. In addition, low-density parity-check GB codes have a naturally overcomplete set of low-weight stabilizer generators, which is expected to improve their performance in the presence of syndrome measurement errors. For such GB codes with a given maximum generator weight w, we constructed upper distance bounds by mapping them to codes local in D≤w−1 dimensions, and lower existence bounds which give d≥O(n1/2). We have also conducted an exhaustive enumeration of GB codes for certain prime circulant sizes in a family of two-qubit encoding codes with row weights 4, 6, and 8; the observed distance scaling is consistent with A(w)n1/2+B(w), where n is the code length and A(w) is increasing with w. 
    more » « less