skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on March 21, 2026

Title: Quantifying Multidimensional Effects of Physicochemical Parameters on PFAS Adsorption Using a Hybrid Response Surface Methodology-Machine Learning Approach
Per- and polyfluoroalkyl substances (PFAS) contamination has posed a significant environmental and public health challenge due to their ubiquitous nature. Adsorption has emerged as a promising remediation technique, yet optimizing adsorption efficiency remains complex due to the diverse physicochemical properties of PFAS and the wide range of adsorbent materials. Traditional modeling approaches, such as response surface methodology (RSM), struggled to capture nonlinear interactions, while standalone machine learning (ML) models required extensive datasets. This study addressed these limitations by developing hybrid RSM-ML models to improve the prediction and optimization of PFAS adsorption. A comprehensive dataset was constructed using experimental adsorption data, integrating key parameters such as pH, pHpzc, surface area, temperature, and PFAS molecular properties. RSM was employed to model adsorption behavior, while gradient boosting (GB), random forest (RF), and extreme gradient boosting (XGB) were used to enhance predictive performance. Hybrid models—linear, RMSE-based, multiplicative, and meta-learning—were developed and evaluated. The meta-learning HOP-RSM-GB model achieved near-perfect accuracy (R² = 1.00, RMSE = 10.59), outperforming all other models. Surface plots revealed that low pH and high pHpzc maximized the adsorption while increasing log Kow consistently enhanced PFAS adsorption. These findings establish hybrid RSM-ML modeling as a powerful framework for optimizing PFAS remediation strategies. The integration of statistical and machine learning approaches significantly improves predictive accuracy, reduces experimental costs, and provides deeper insights into adsorption mechanisms. This study underscores the importance of data-driven approaches in environmental engineering and highlights future opportunities for integrating ML-driven modeling with experimental adsorption research.  more » « less
Award ID(s):
2216148
PAR ID:
10632024
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Format(s):
Medium: X
Institution:
North Carolina A and T State University
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Land surface temperature (LST) is crucial for understanding earth system processes. We expanded the Advanced Baseline Imager Live Imaging of Vegetated Ecosystems (ALIVE) framework to estimate LST in near‐real‐time for both cloudy and clear sky conditions at a five‐minute resolution. We compared two machine learning (ML) models, Long Short‐Term Memory (LSTM) networks and Gradient Boosting Regressor (GBR), using top‐of‐atmosphere observations from the Advanced Baseline Imager (ABI) on the GOES‐16 satellite against observations from hundreds of observation sites for a five‐year period. Long Short‐Term Memory outperformed GBR, especially at coarser resolutions and under challenging conditions, with a clear sky R2of 0.96 (RMSE 2.31K) and a cloudy sky R2of 0.83 (RMSE 4.10K) across CONUS, based on 10‐repeat Leave‐One‐Out Cross‐Validation (LOOCV). GBR maintained high accuracy and ran 5.3 times faster, with only a 0.01–0.02 R2drop. Feature importance revealed infrared bands were key in both models, with LSTM adapting dynamically to atmospheric changes, while GBR utilized more time information in cloudy conditions. A comparative analysis against the physically based ABILSTproduct showed strong agreement in winter, particularly under clear sky conditions, while also highlighting the challenges of summer LST estimation due to increased thermal variability. This study underscores the strengths and limitations of data‐driven models for LST estimation and suggests potential pathways for integrating ML models to enhance the accuracy and coverage of LST products. 
    more » « less
  2. Abstract The application of machine learning (ML) techniques in materials science has revolutionized the pace and scope of materials research and design. In the case of metal–organic frameworks (MOFs), a promising class of materials due to their tunable properties and versatile applications in gas adsorption and separation, ML has helped survey the vast material space. This study explores the integration of reinforcement learning (RL), specifically Q‐learning, within an active learning (AL) context, combined with Gaussian processes (GPs) for predictive modeling of adsorption in MOFs. We demonstrate the effectiveness of the RL‐driven framework in guiding the selection of training data points and optimizing predictive model performance for methane and carbon dioxide adsorption, using two different reward metrics. Our results highlight the integration of RL as an AL method for adsorption predictions in MFs, and how it compares to a previously implemented AL scheme. 
    more » « less
  3. The accuracy of single particle (SP) models for lithium-ion batteries at high C-rates is constrained by lithium concentration gradients in the electrolyte, which affect ionic conductivity, overpotential, and reaction rates. This study addresses these limitations using extreme gradient boosting machine learning (ML). By training our ML model with data from a comprehensive electrochemical (P2D) model and performing sensitivity analysis on key battery parameters, we enhance predictive accuracy. Compared to conventional SP and P2D models under constant current loading, our ML-based SP model achieves similar predictive accuracy to P2D, with significant improvements in computational efficiency. Additionally, the ML-based SP model demonstrates improved predictive accuracy under dynamic loading conditions, providing a practical framework for improving battery management and safety. 
    more » « less
  4. This study investigates high-frequency mapping of downward shortwave radiation (DSR) at the Earth’s surface using the advanced baseline imager (ABI) instrument mounted on Geo- stationary Operational Environmental Satellite—R Series (GOES- R). The existing GOES-R DSR product (DSRABI) offers hourly temporal resolution and spatial resolution of 0.25°. To enhance these resolutions, we explore machine learning (ML) for DSR estimation at the native temporal resolution of GOES-R Level-2 cloud and moisture imagery product (5 min) and its native spatial resolution of 2 km at nadir. We compared four common ML regres- sion models through the leave-one-out cross-validation algorithm for robust model assessment against ground measurements from AmeriFlux and SURFRAD networks. Results show that gradient boosting regression (GBR) achieves the best performance (R2 = 0.916, RMSE = 88.05 W·m−2) with more efficient computation compared to long short-term memory, which exhibited similar performance. DSR estimates from the GBR model through the ABI live imaging of vegetated ecosystems workflow (DSRALIVE) outperform DSRABI across various temporal resolutions and sky conditions. DSRALIVE agreement with ground measurements at SURFRAD networks exhibits high accuracy at high temporal res- olutions (5-min intervals) with R2 exceeding 0.85 and RMSE = 122 W·m−2 . We conclude that GBR offers a promising approach for high-frequency DSR mapping from GOES-R, enabling improved applications for near-real-time monitoring of terrestrial carbon and water fluxes. 
    more » « less
  5. Predicting the transpiration stream concentration factor (TSCF) and other concentration factors is essential in understanding the plant uptake of organic contaminants. Traditional mechanistic and numerical modeling methods often fail to reliably predict the TSCF. This study developed a hybrid deep model to predict TSCF by integrating convolutional neural networks (CNNs) and long short-term memory (LSTM) networks. This hybrid CNN-LSTM model used eight physicochemical properties of organic contaminants to predict TSCF. The training procedure for this hybrid model was successful. The results indicated the training and test losses for predicting TSCF were both in the same order and close to zero. This study showed that the hybrid CNN-LSTM model can outperform mechanistic models and have higher performances compared to classical machine learning models. Feature importance analysis using extreme gradient boosting highlighted the role and importance of lipophilicity in predicting uptake and translocation of organic contaminants. 
    more » « less