Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Per- and polyfluoroalkyl substances (PFAS) contamination has posed a significant environmental and public health challenge due to their ubiquitous nature. Adsorption has emerged as a promising remediation technique, yet optimizing adsorption efficiency remains complex due to the diverse physicochemical properties of PFAS and the wide range of adsorbent materials. Traditional modeling approaches, such as response surface methodology (RSM), struggled to capture nonlinear interactions, while standalone machine learning (ML) models required extensive datasets. This study addressed these limitations by developing hybrid RSM-ML models to improve the prediction and optimization of PFAS adsorption. A comprehensive dataset was constructed using experimental adsorption data, integrating key parameters such as pH, pHpzc, surface area, temperature, and PFAS molecular properties. RSM was employed to model adsorption behavior, while gradient boosting (GB), random forest (RF), and extreme gradient boosting (XGB) were used to enhance predictive performance. Hybrid models—linear, RMSE-based, multiplicative, and meta-learning—were developed and evaluated. The meta-learning HOP-RSM-GB model achieved near-perfect accuracy (R² = 1.00, RMSE = 10.59), outperforming all other models. Surface plots revealed that low pH and high pHpzc maximized the adsorption while increasing log Kow consistently enhanced PFAS adsorption. These findings establish hybrid RSM-ML modeling as a powerful framework for optimizing PFAS remediation strategies. The integration of statistical and machine learning approaches significantly improves predictive accuracy, reduces experimental costs, and provides deeper insights into adsorption mechanisms. This study underscores the importance of data-driven approaches in environmental engineering and highlights future opportunities for integrating ML-driven modeling with experimental adsorption research.more » « lessFree, publicly-accessible full text available March 21, 2026
-
Free, publicly-accessible full text available February 1, 2026
-
This study, data driven machine learning model was developed to estimate the partitioning of Per- and Poly-fluoroalkyl Substances (PFAS) compounds during aqueous adsorption on various adsorbent materials with a vision to potentially replace the time-consuming and labor-intensive adsorption experiments. Various regression models were trained and tested using previously published data. 290 data points and 170 data points for activated carbon and mineral adsorbents, respectively, were mined for training the models and 10 data points were used to test the trained models. Statistical parameters, such as Root-Mean-Square Error (RSME), R-Squared, Mean Average Error (MAE), Mean Squared Error (MSE), etc., were used to compare the regression models. It was found that rational quadratic GPR (R-squared = 0.9966) and fine regression tree (R-Squared = 0.9427) models had the highest estimation accuracy for carbon-based and mineral-based adsorbents, respectively. These models were then validated for prediction accuracy using 10 data points from previous studies as an outer test set. Rational quadratic GPR was able to achieve 99% prediction accuracy for carbon-based adsorbent, while fine tree regression model was able to achieve 94% prediction accuracy. Despite such high estimation accuracy, the data mining process revealed the data shortage and the need for more research on PFAS adsorption to present real-world models. This study, as one of the first, shed a light on the determination of key parameters in aquatic chemistry with data mining and machine learning approaches.more » « less
An official website of the United States government

Full Text Available