skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Response of mass ply panel, self-centering rocking walls with buckling-restrained boundary elements as energy dissipators in shake table testing
A full-scale, six-story, mass timber building including Mass Ply Panel (MPP) self-centering rocking walls with Buckling-Restrained Boundary Elements (BRBs) was tested at the Large High-Performance Outdoor Shake Table (LHPOST6) at the University of California, San Diego (UCSD). Measured sensor and derived data included global responses, such as floor displacements and accelerations, along with local responses, such as post-tensioning (PT) forces and uplift displacements, among others. The three-dimensional shake table testing program included 23 ground motion records with intensities of shaking ranging from Service (SLE) up to Risk-Targeted Maximum Considered Earthquake (MCER) levels. Results highlighted that: [i] the drift response was near uniform along the height of the building, [ii] the acceleration response included large contributions from the higher modes, [iii] the PT rods remained elastic and had stable post-tensioning force throughout the test program, and [iv] the self-centering system resulted in negligible residual drifts. Qualitative observations from construction and testing were also cataloged to further support the feasibility of implementation in practice. By combining steel BRBs and post-tensioning rods with MPP rocking elements, the system was able to meet the enhanced seismic performance goals targeted for the project. Future work will seek to define both resilience and sustainability targets for designs incorporating multiple performance objectives.  more » « less
Award ID(s):
2120683
PAR ID:
10632060
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
World Conference On Timber Engineering 2025
Date Published:
ISBN:
979-8-3313-2089-8
Page Range / eLocation ID:
2463 to 2472
Format(s):
Medium: X
Location:
Brisbane, Australia
Sponsoring Org:
National Science Foundation
More Like this
  1. The Natural Hazards Engineering Research Infrastructure (NHERI) Converging Design project is a collaborative effort between multiple universities and industry entities with the goal of creating a new design paradigm in structural engineering that employs multi-objective optimization to maximize functional recovery while integrating sustainability principles in the design process. The structural design approaches were validated through full-scale shake table testing of a 6-story mass timber structure at the at the Englekirk Structural Engineering Center at University of California, San Diego (NHERI@UCSD) Large High-Performance Outdoor Shake Table (LHPOST6) facility for eventual inclusion in a multi-objective design optimization framework. The shake table testing included three phases. Phase one consisted of a mass timber self-centering rocking wall (SCRW) system with U-shaped flexural plates (UFPs) in both building horizontal directions. Phase two replaced the SCRWs in one principal direction with SCRWs with buckling restrained boundary elements (BRBs) at the first story. Phase three replaced the newer walls from phase two with a resilient steel moment frame and concentric braced-frame (MF/CBF). The data shared includes reports summarizing the testing program, structural drawings, instrumentation setups, and raw data for the series of shake table tests performed during each phase. The data include building responses due to shake table motions simulating scaled historical ground motions and white noise (WN) tests. 
    more » « less
  2. To address functional recovery after earthquakes, there is growing interest in developing enhancedperformance seismic-resisting systems. Rocking walls, featuring a base gap-opening mechanism and designed to remain essentially elastic above the base, have demonstrated their potential in various construction materials, including mass timber. If combined with steel energy dissipators, the resulting hybrid steel-mass timber rocking walls have emerged as a promising seismic-resisting system. This study focuses on Post-Tensioned Mass Timber Rocking Walls supplemented with Buckling-Restrained Brace (BRB) boundary elements and builds upon findings from experimental programs funded by the National Science Foundation (NSF) and the United States Department of Agriculture (USDA). The rocking mechanism, controlled by the BRBs and the Post-Tensioned (PT) rods, provides self-centering behaviour, reducing the potential for residual drifts and improving post-earthquake repairability. An estimating method for higher-mode loading profiles is proposed and applied to a six-story archetype, which was tested at the Large High Performance Outdoor Shake Table (LHPOST) at the University of California San Diego (UCSD) in January 2024 as part of the NHERI Converging Design Project. The estimating method is practically formulated to facilitate the implementation in design procedures. 
    more » « less
  3. A test program was designed to answer if it is possible to design and build a tall mass timber building with resilient performance against large earthquakes. Resilient performance was defined as to receive no structural damage under design level earthquake, and only easily repairable damage under maximum considered earthquake. The system under investigation is a full-scale 10-story mass timber building designed and constructed with many innovative systems and details including post-tensioned wood rocking wall lateral systems. Non-structural components on the building were also tested to ensure their damage in all earthquakes are repairable and will not significantly delay the functional recovery of the building after large earthquakes. The tests were conducted using multi-directional ground motion excitations ranging from frequent earthquakes to maximum considered earthquakes. The resultant dataset contains a total of 88 shake table tests and 48 white noise tests conducted on the building at the high-performance outdoor shake table facility in San Diego CA. U.S.A. Data was obtained using over 700 channels of wired sensors installed on the building during the seismic tests, presented in the form of time history of the measured responses. The tall wood building survived all excitations without detectible structural damage. This publication includes detailed documentation on the design and testing of the building, including construction drawing sets. Representative photo and video footage of the test structure during construction and testing are also included. This dataset is useful for researchers and engineers working on mass timber building design and construction in regions of high seismicity. 
    more » « less
  4. Abstract This paper presents a computationally efficient numerical model for predicting seismic responses of post‐tensioned cross‐laminated timber (CLT) rocking wall systems. The rocking wall is modeled as a simple linear beam element with a nonlinear rotational spring at the base. The model is primarily intended for preliminary design and assessment of multistory buildings using this particular lateral system. A method was developed to determine the nonlinear rotational spring parameters by considering the dimension of the CLT wall panel and post‐tensioned steel rods and energy dissipating devices’ contributions. The proposed model was validated by comparing the simulated results with the responses from a series of shake table tests of a full‐scale two‐story building with CLT rocking walls. The numerical results show reasonable agreement with the shake table test results considering the simplicity of the model. 
    more » « less
  5. This paper presents the statistical and numerical investigation of the seismic performance of a three-story post-tensioned mass ply panel (MPP) rocking wall lateral force-resisting system prototype whose main components are MPP, U-shaped flexural steel plates (UFPs), and high-strength steel post-tensioned rods. Uncertainties in material properties and geometry of the components are considered in the assessment of the performance of this lateral forceresisting system based on recent experimental data on MPP, experimental data available in the literature for the UFPs and post-tensioning rods, as well as some additional structural design considerations. In the assessment of the seismic performance factors, first, random realizations of the structural design are generated using Monte Carlo simulation. Second, for each realization, a nonlinear finite element model is developed. For each realization, two types of analysis are performed, nonlinear static analyses, and incremental dynamic analyses. Results of the nonlinear static and dynamic analyses are then used to estimate the seismic design factors (e.g., R-factor) and limit state-based fragility functions, the latter being based on exceeding limit states defined for each component based on existing experimental data. 
    more » « less