skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Shake table testing program for mass timber and hybrid resilient structures datasets for the NHERI Converging Design project:Subtitle
The Natural Hazards Engineering Research Infrastructure (NHERI) Converging Design project is a collaborative effort between multiple universities and industry entities with the goal of creating a new design paradigm in structural engineering that employs multi-objective optimization to maximize functional recovery while integrating sustainability principles in the design process. The structural design approaches were validated through full-scale shake table testing of a 6-story mass timber structure at the at the Englekirk Structural Engineering Center at University of California, San Diego (NHERI@UCSD) Large High-Performance Outdoor Shake Table (LHPOST6) facility for eventual inclusion in a multi-objective design optimization framework. The shake table testing included three phases. Phase one consisted of a mass timber self-centering rocking wall (SCRW) system with U-shaped flexural plates (UFPs) in both building horizontal directions. Phase two replaced the SCRWs in one principal direction with SCRWs with buckling restrained boundary elements (BRBs) at the first story. Phase three replaced the newer walls from phase two with a resilient steel moment frame and concentric braced-frame (MF/CBF). The data shared includes reports summarizing the testing program, structural drawings, instrumentation setups, and raw data for the series of shake table tests performed during each phase. The data include building responses due to shake table motions simulating scaled historical ground motions and white noise (WN) tests.  more » « less
Award ID(s):
2120683
PAR ID:
10571020
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Designsafe-CI
Date Published:
Subject(s) / Keyword(s):
shake table mass timber Full-scale resilient steel moment frame steel concentric braced frame structural fuse cross-laminated timber mass ply panel UFP self-centering rocking wall
Format(s):
Medium: X
Institution:
Six Degree of Freedom Large High-Performance Outdoor Shake Table LHPOST6 - University of California, San Diego
Sponsoring Org:
National Science Foundation
More Like this
  1. A test program was designed to answer if it is possible to design and build a tall mass timber building with resilient performance against large earthquakes. Resilient performance was defined as to receive no structural damage under design level earthquake, and only easily repairable damage under maximum considered earthquake. The system under investigation is a full-scale 10-story mass timber building designed and constructed with many innovative systems and details including post-tensioned wood rocking wall lateral systems. Non-structural components on the building were also tested to ensure their damage in all earthquakes are repairable and will not significantly delay the functional recovery of the building after large earthquakes. The tests were conducted using multi-directional ground motion excitations ranging from frequent earthquakes to maximum considered earthquakes. The resultant dataset contains a total of 88 shake table tests and 48 white noise tests conducted on the building at the high-performance outdoor shake table facility in San Diego CA. U.S.A. Data was obtained using over 700 channels of wired sensors installed on the building during the seismic tests, presented in the form of time history of the measured responses. The tall wood building survived all excitations without detectible structural damage. This publication includes detailed documentation on the design and testing of the building, including construction drawing sets. Representative photo and video footage of the test structure during construction and testing are also included. This dataset is useful for researchers and engineers working on mass timber building design and construction in regions of high seismicity. 
    more » « less
  2. During extreme events such as earthquakes, stairs are the primary means of egress in and out of buildings. Therefore, understanding the seismic response of this non-structural system is essential. Past earthquake events have shown that stairs with a flight to landing fixed connection are prone to damage due to the large interstory drift demand they are subjected to. To address this, resilient stair systems with drift-compatible connections have been proposed. These stair systems include stairs with fixed-free connections, sliding-slotted connections, and related drift-compatible detailing. Despite the availability of such details in design practice, they have yet to be implemented into full-scale, multi-floor building test programs. To conduct a system-level experimental study using true-to-field boundary conditions of these stair systems, several stair configurations are planned for integration within the NHERI TallWood 10-story mass timber building test program. The building is currently under construction at the UC San Diego 6-DOF Large High-Performance Outdoor Shake Table (LHPOST6). To facilitate pre-test investigation of the installed stair systems a comprehensive finite element model of stairs with various boundary conditions has been proposed and validated via comparison with experimental data available on like-detailed single-story specimens tested at the University of Nevada, Reno (UNR). The proposed modelling approach was used to develop the finite element model of a single-story, scissor-type, stair system with drift-compatible connections to be implemented in the NHERI TallWood building. This paper provides an overview, and pre-test numerical evaluation of the planned stair testing program within the mass timber shake table testing effort. 
    more » « less
  3. A veneer-based engineered wood product known as Mass Ply Panels (MPP) was recently introduced and certified per ANSI-PRG 320. A full-scale three-story mass timber building structure was constructed and tested at Oregon State University to demonstrate the potential of MPP in the design of resilient, structural lateral force-resisting systems. The building structure comprised MPP diaphragms, laminated veneer lumber (LVL) beams and columns, and an MPP rocking wall design. Two opportunistic vibration tests were performed to charac-terize the dynamic properties of the structure. First, an implosion of a stadium within 600 m of the building location was used as the main excitation source, during which bi-directional horizontal acceleration data were collected for approximately 18 seconds. Second, an ambient vibration test was conducted to collect horizontal acceleration data for one hour. In both tests, sixteen accelerometers were used to measure the response of the structure. Modal features were extracted using an output-only method and compared with the estimates from a finite element model. Lessons learned can be used to inform future modeling efforts of a mass timber building to be tested on the Natural Hazards Engineering Research Infrastructure (NHERI) Experimental Facility at the University of California San Diego high-performance outdoor shake table. 
    more » « less
  4. Mass timber is a sustainable option for building design compared to traditional steel and concrete building systems. A shake table test of a full-scale 10-story mass timber building with post-tensioned mass timber rocking walls will be conducted as part of the NHERI TallWood project. The rocking wall system is inherently flexible and is expected to sustain large interstory drifts. Thus, the building’s vertically oriented non-structural components, which include cold-formed steel (CFS) framed exterior skin subassemblies that use platform, bypass, and spandrel framing, a stick-built glass curtain wall subassembly with mechanically captured glazing, and CFS framed interior walls, will be built with a variety of innovative details to accommodate the large drift demands. This paper will describe these innovative details and the mechanisms by which they mitigate damage, provide an overview of the shake table test protocol, and present performance predictions for the non-structural walls. 
    more » « less
  5. A series of shake table tests were recently conducted on full-scale 10-story and 6-story mass timber buildings at the 6-DOF Large High-Performance Outdoor Shaking Table facility at the University of California San Diego. Stairs, providing the primary egress in and out of a building during and after an earthquake event, were incorporated in each of these building test programs. To ensure they support the immediate recovery of building function, a variety of drift-release details were incorporated. Previous earthquake events and experimental studies have shown that stairs are among the most drift-sensitive nonstructural systems and are prone to damage, therefore relieving interstory drifts is paramount to improving their performance. To this end, the designed drift-release connections within the stairs considered the test buildings response during earthquake motions scaled at various hazard levels with expected minor and repairable damage under large earthquake loading. This paper provides an overview of the shake table test programs from the perspective of the design and performance of resilient steel stairs. 
    more » « less