skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Sparse Bounded Hop-Spanners for Geometric Intersection Graphs
We present new results on 2- and 3-hop spanners for geometric intersection graphs. These include improved upper and lower bounds for 2- and 3-hop spanners for many geometric intersection graphs in ℝ^d. For example, we show that the intersection graph of n balls in ℝ^d admits a 2-hop spanner of size O^*(n^{3/2 - 1/(2(2⌊d/2⌋ + 1))}) and the intersection graph of n fat axis-parallel boxes in ℝ^d admits a 2-hop spanner of size O(n log^{d+1}n). Furthermore, we show that the intersection graph of general semi-algebraic objects in ℝ^d admits a 3-hop spanner of size O^*(n^{3/2 - 1/(2(2D-1))}), where D is a parameter associated with the description complexity of the objects. For such families (or more specifically, for tetrahedra in ℝ³), we provide a lower bound of Ω(n^{4/3}). For 3-hop and axis-parallel boxes in ℝ^d, we provide the upper bound O(n log ^{d-1}n) and lower bound Ω(n ({log n}/{log log n})^{d-2}).  more » « less
Award ID(s):
2154347
PAR ID:
10632061
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Aichholzer, Oswin; Wang, Haitao
Publisher / Repository:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Date Published:
Volume:
332
ISSN:
1868-8969
ISBN:
978-3-95977-370-6
Page Range / eLocation ID:
17:1-17:15
Subject(s) / Keyword(s):
Geometric Spanners Geometric Intersection Graphs Theory of computation → Computational geometry
Format(s):
Medium: X Size: 15 pages; 809296 bytes Other: application/pdf
Size(s):
15 pages 809296 bytes
Right(s):
Creative Commons Attribution 4.0 International license; info:eu-repo/semantics/openAccess
Sponsoring Org:
National Science Foundation
More Like this
  1. Chambers, Erin W.; Gudmundsson, Joachim (Ed.)
    In SoCG 2022, Conroy and Tóth presented several constructions of sparse, low-hop spanners in geometric intersection graphs, including an O(nlog n)-size 3-hop spanner for n disks (or fat convex objects) in the plane, and an O(nlog² n)-size 3-hop spanner for n axis-aligned rectangles in the plane. Their work left open two major questions: (i) can the size be made closer to linear by allowing larger constant stretch? and (ii) can near-linear size be achieved for more general classes of intersection graphs? We address both questions simultaneously, by presenting new constructions of constant-hop spanners that have almost linear size and that hold for a much larger class of intersection graphs. More precisely, we prove the existence of an O(1)-hop spanner for arbitrary string graphs with O(nα_k(n)) size for any constant k, where α_k(n) denotes the k-th function in the inverse Ackermann hierarchy. We similarly prove the existence of an O(1)-hop spanner for intersection graphs of d-dimensional fat objects with O(nα_k(n)) size for any constant k and d. We also improve on some of Conroy and Tóth’s specific previous results, in either the number of hops or the size: we describe an O(nlog n)-size 2-hop spanner for disks (or more generally objects with linear union complexity) in the plane, and an O(nlog n)-size 3-hop spanner for axis-aligned rectangles in the plane. Our proofs are all simple, using separator theorems, recursion, shifted quadtrees, and shallow cuttings. 
    more » « less
  2. null (Ed.)
    Lightness and sparsity are two natural parameters for Euclidean (1+ε)-spanners. Classical results show that, when the dimension d ∈ ℕ and ε > 0 are constant, every set S of n points in d-space admits an (1+ε)-spanners with O(n) edges and weight proportional to that of the Euclidean MST of S. Tight bounds on the dependence on ε > 0 for constant d ∈ ℕ have been established only recently. Le and Solomon (FOCS 2019) showed that Steiner points can substantially improve the lightness and sparsity of a (1+ε)-spanner. They gave upper bounds of Õ(ε^{-(d+1)/2}) for the minimum lightness in dimensions d ≥ 3, and Õ(ε^{-(d-1))/2}) for the minimum sparsity in d-space for all d ≥ 1. They obtained lower bounds only in the plane (d = 2). Le and Solomon (ESA 2020) also constructed Steiner (1+ε)-spanners of lightness O(ε^{-1}logΔ) in the plane, where Δ ∈ Ω(log n) is the spread of S, defined as the ratio between the maximum and minimum distance between a pair of points. In this work, we improve several bounds on the lightness and sparsity of Euclidean Steiner (1+ε)-spanners. Using a new geometric analysis, we establish lower bounds of Ω(ε^{-d/2}) for the lightness and Ω(ε^{-(d-1)/2}) for the sparsity of such spanners in Euclidean d-space for all d ≥ 2. We use the geometric insight from our lower bound analysis to construct Steiner (1+ε)-spanners of lightness O(ε^{-1}log n) for n points in Euclidean plane. 
    more » « less
  3. Given a set S of n points in the plane and a parameter ε>0, a Euclidean (1+ε) -spanner is a geometric graph G=(S,E) that contains a path of weight at most (1+ε)∥pq∥2 for all p,q∈S . We show that the minimum weight of a Euclidean (1+ε)-spanner for n points in the unit square [0,1]2 is O(ε−3/2n−−√), and this bound is the best possible. The upper bound is based on a new spanner algorithm that sparsifies Yao-graphs. It improves upon the baseline O(ε−2n−−√), obtained by combining a tight bound for the weight of an MST and a tight bound for the lightness of Euclidean (1+ε)-spanners, which is the ratio of the spanner weight to the weight of the MST. The result generalizes to d-space for all d∈N : The minimum weight of a Euclidean (1+ε)-spanner for n points in the unit cube [0,1]d is Od(ε(1−d2)/dn(d−1)/d), and this bound is the best possible. For the n×n section of the integer lattice, we show that the minimum weight of a Euclidean (1+ε)-spanner is between Ω(ε−3/4n2) and O(ε−1log(ε−1)n2). These bounds become Ω(ε−3/4n−−√) and O(ε−1log(ε−1)n−−√) when scaled to a grid of n points in [0,1]2. . 
    more » « less
  4. Grandoni, Fabrizio; Herman, Grzegorz; Sanders, Peter (Ed.)
    Reliable spanners can withstand huge failures, even when a linear number of vertices are deleted from the network. In case of failures, some of the remaining vertices of a reliable spanner may no longer admit the spanner property, but this collateral damage is bounded by a fraction of the size of the attack. It is known that Ω(nlog n) edges are needed to achieve this strong property, where n is the number of vertices in the network, even in one dimension. Constructions of reliable geometric (1+ε)-spanners, for n points in ℝ^d, are known, where the resulting graph has 𝒪(n log n log log⁶n) edges. Here, we show randomized constructions of smaller size spanners that have the desired reliability property in expectation or with good probability. The new construction is simple, and potentially practical - replacing a hierarchical usage of expanders (which renders the previous constructions impractical) by a simple skip list like construction. This results in a 1-spanner, on the line, that has linear number of edges. Using this, we present a construction of a reliable spanner in ℝ^d with 𝒪(n log log²n log log log n) edges. 
    more » « less
  5. null (Ed.)
    Lightness is a fundamental parameter for Euclidean spanners; it is the ratio of the spanner weight to the weight of the minimum spanning tree of a finite set of points in ℝ^d. In a recent breakthrough, Le and Solomon (2019) established the precise dependencies on ε > 0 and d ∈ ℕ of the minimum lightness of a (1+ε)-spanner, and observed that additional Steiner points can substantially improve the lightness. Le and Solomon (2020) constructed Steiner (1+ε)-spanners of lightness O(ε^{-1}logΔ) in the plane, where Δ ≥ Ω(√n) is the spread of the point set, defined as the ratio between the maximum and minimum distance between a pair of points. They also constructed spanners of lightness Õ(ε^{-(d+1)/2}) in dimensions d ≥ 3. Recently, Bhore and Tóth (2020) established a lower bound of Ω(ε^{-d/2}) for the lightness of Steiner (1+ε)-spanners in ℝ^d, for d ≥ 2. The central open problem in this area is to close the gap between the lower and upper bounds in all dimensions d ≥ 2. In this work, we show that for every finite set of points in the plane and every ε > 0, there exists a Euclidean Steiner (1+ε)-spanner of lightness O(ε^{-1}); this matches the lower bound for d = 2. We generalize the notion of shallow light trees, which may be of independent interest, and use directional spanners and a modified window partitioning scheme to achieve a tight weight analysis. 
    more » « less