skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2154347

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2026
  2. Morin, Pat; Oh, Eunjin (Ed.)
    Let S be a set of n points in ℝ^d, where d ≥ 2 is a constant, and let H₁,H₂,…,H_{m+1} be a sequence of vertical hyperplanes that are sorted by their first coordinates, such that exactly n/m points of S are between any two successive hyperplanes. Let |A(S,m)| be the number of different closest pairs in the {(m+1) choose 2} vertical slabs that are bounded by H_i and H_j, over all 1 ≤ i < j ≤ m+1. We prove tight bounds for the largest possible value of |A(S,m)|, over all point sets of size n, and for all values of 1 ≤ m ≤ n. As a result of these bounds, we obtain, for any constant ε > 0, a data structure of size O(n), such that for any vertical query slab Q, the closest pair in the set Q ∩ S can be reported in O(n^{1/2+ε}) time. Prior to this work, no linear space data structure with sublinear query time was known. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  3. Aichholzer, Oswin; Wang, Haitao (Ed.)
    We present new results on 2- and 3-hop spanners for geometric intersection graphs. These include improved upper and lower bounds for 2- and 3-hop spanners for many geometric intersection graphs in ℝ^d. For example, we show that the intersection graph of n balls in ℝ^d admits a 2-hop spanner of size O^*(n^{3/2 - 1/(2(2⌊d/2⌋ + 1))}) and the intersection graph of n fat axis-parallel boxes in ℝ^d admits a 2-hop spanner of size O(n log^{d+1}n). Furthermore, we show that the intersection graph of general semi-algebraic objects in ℝ^d admits a 3-hop spanner of size O^*(n^{3/2 - 1/(2(2D-1))}), where D is a parameter associated with the description complexity of the objects. For such families (or more specifically, for tetrahedra in ℝ³), we provide a lower bound of Ω(n^{4/3}). For 3-hop and axis-parallel boxes in ℝ^d, we provide the upper bound O(n log ^{d-1}n) and lower bound Ω(n ({log n}/{log log n})^{d-2}). 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  4. Free, publicly-accessible full text available January 1, 2026
  5. Felsner, Stefan; Klein, Karsten (Ed.)
    Edge crossings in geometric graphs are sometimes undesirable as they could lead to unwanted situations such as collisions in motion planning and inconsistency in VLSI layout. Short geometric structures such as shortest perfect matchings, shortest spanning trees, shortest spanning paths, and shortest spanning cycles on a given point set are inherently noncrossing. However, the longest such structures need not be noncrossing. In fact, it is intuitive to expect many edge crossings in various geometric graphs that are longest. Recently, Álvarez-Rebollar, Cravioto-Lagos, Marín, Solé-Pi, and Urrutia (Graphs and Combinatorics, 2024) constructed a set of points for which the longest perfect matching is noncrossing. They raised several challenging questions in this direction. In particular, they asked whether the longest spanning path, on any finite set of points in the plane, must have a pair of crossing edges. They also conjectured that the longest spanning cycle must have a pair of crossing edges. In this paper, we give a negative answer to the question and also refute the conjecture. We present a framework for constructing arbitrarily large point sets for which the longest perfect matchings, the longest spanning paths, and the longest spanning cycles are noncrossing. 
    more » « less
  6. Mulzer, Wolfgang; Phillips, Jeff M (Ed.)
    A fundamental question is whether one can maintain a maximum independent set (MIS) in polylogarithmic update time for a dynamic collection of geometric objects in Euclidean space. For a set of intervals, it is known that no dynamic algorithm can maintain an exact MIS in sublinear update time. Therefore, the typical objective is to explore the trade-off between update time and solution size. Substantial efforts have been made in recent years to understand this question for various families of geometric objects, such as intervals, hypercubes, hyperrectangles, and fat objects. We present the first fully dynamic approximation algorithm for disks of arbitrary radii in the plane that maintains a constant-factor approximate MIS in polylogarithmic expected amortized update time. Moreover, for a fully dynamic set of n unit disks in the plane, we show that a 12-approximate MIS can be maintained with worst-case update time O(log n), and optimal output-sensitive reporting. This result generalizes to fat objects of comparable sizes in any fixed dimension d, where the approximation ratio depends on the dimension and the fatness parameter. Further, we note that, even for a dynamic set of disks of unit radius in the plane, it is impossible to maintain O(1+ε)-approximate MIS in truly sublinear update time, under standard complexity assumptions. Our results build on two recent technical tools: (i) The MIX algorithm by Cardinal et al. (ESA 2021) that can smoothly transition from one independent set to another; hence it suffices to maintain a family of independent sets where the largest one is an O(1)-approximate MIS. (ii) A dynamic nearest/farthest neighbor data structure for disks by Kaplan et al. (DCG 2020) and Liu (SICOMP 2022), which generalizes the dynamic convex hull data structure by Chan (JACM 2010), and quickly yields a "replacement" disk (if any) when a disk in one of our independent sets is deleted. 
    more » « less
  7. Mestre, Julián; Wirth, Anthony (Ed.)
    For a set of red and blue points in the plane, a minimum bichromatic spanning tree (MinBST) is a shortest spanning tree of the points such that every edge has a red and a blue endpoint. A MinBST can be computed in O(n log n) time where n is the number of points. In contrast to the standard Euclidean MST, which is always plane (noncrossing), a MinBST may have edges that cross each other. However, we prove that a MinBST is quasi-plane, that is, it does not contain three pairwise crossing edges, and we determine the maximum number of crossings. Moreover, we study the problem of finding a minimum plane bichromatic spanning tree (MinPBST) which is a shortest bichromatic spanning tree with pairwise noncrossing edges. This problem is known to be NP-hard. The previous best approximation algorithm, due to Borgelt et al. (2009), has a ratio of O(√n). It is also known that the optimum solution can be computed in polynomial time in some special cases, for instance, when the points are in convex position, collinear, semi-collinear, or when one color class has constant size. We present an O(log n)-factor approximation algorithm for the general case. 
    more » « less
  8. For a polygon P with holes in the plane, we denote by ρ(P ) the ratio between the geodesic and the Euclidean diameters of P . It is shown that over all convex polygons with h convex holes, the supremum of ρ(P ) is between Ω(h1/3) and O(h1/2). The upper bound improves to O(1 + min{h3/4∆, h1/2∆1/2}) if every hole has diameter at most ∆ ·diam2(P ); and to O(1) if every hole is a fat convex polygon. Furthermore, we show that the function g(h) = supP ρ(P ) over convex polygons with h convex holes has the same growth rate as an analogous quantity over geometric triangulations with h vertices when h → ∞ 
    more » « less