Abstract Carbonyl-bearing complex organic molecules (COMs) in the interstellar medium (ISM) are of significant importance due to their role as potential precursors to biomolecules. Simple aldehydes and ketones like acetaldehyde, acetone, and propanal have been recognized as fundamental molecular building blocks and tracers of chemical processes involved in the formation of distinct COMs in molecular clouds and star-forming regions. Although previous laboratory simulation experiments and modeling established the potential formation pathways of interstellar acetaldehyde and propanal, the underlying formation routes to the simplest ketone—acetone—in the ISM are still elusive. Herein, we performed a systematic study to unravel the synthesis of acetone, its propanal and propylene oxide isomers, as well as the propenol tautomers in interstellar analog ices composed of methane and acetaldehyde along with isotopic-substitution studies to trace the reaction pathways of the reactive intermediates. Chemical processes in the ices were triggered at 5.0 K upon exposure to proxies of Galactic cosmic rays in the form of energetic electrons. The products were detected isomer-selectively via vacuum ultraviolet (VUV) photoionization reflectron time-of-flight mass spectrometry. In our experiments, the branching ratio of acetone (CH3COCH3):propylene oxide (c-CH3CHOCH2):propanal (CH3CH2CHO) was determined to be (4.82 ± 0.05):(2.86 ± 0.13):1. The radical–radical recombination reaction leading to acetone emerged as the dominant channel. The propenols appeared only at a higher radiation dose via keto–enol tautomerization. The current study provides mechanistic information on the fundamental nonequilibrium pathways that may be responsible for the formation of acetone and its (enol) isomers inside the interstellar icy grains.
more »
« less
This content will become publicly available on April 1, 2026
CoCCoA: Complex Chemistry in hot Cores with ALMA: The chemical evolution of acetone from ice to gas
Context.Acetone (CH3COCH3) is one of the most abundant three-carbon oxygen-bearing complex organic molecules (O-COMs) that have been detected in space. The previous detections were made in the gas phase toward star-forming regions that are chemically rich, mostly in protostellar systems. Recently, acetone ice has also been reported as (tentatively) detected toward two low-mass protostars, allowing comparisons in acetone abundances between gas and ice. The detection of acetone ice warrants a more systematic study of its gaseous abundances which is currently lacking. Aims.We aim to measure the gas-phase abundances of acetone in a large sample obtained from the CoCCoA program, and investigate the chemical evolution of acetone from ice to gas in protostellar systems. Methods.We fit the ALMA spectra to determine the column density, excitation temperature, and line width of acetone in 12 high-mass protostars as part of CoCCoA. We also constrained the physical properties of propanal (C2H5CHO), ketene (CH2CO), and propyne (CH3CCH), which might be chemically linked with acetone. We discuss the possible formation pathways of acetone by making comparisons in its abundances between gas and ice and between observations and simulations. Results.We firmly detect acetone, ketene, and propyne in the 12 high-mass protostars. The observed gas-phase abundances of acetone are surprisingly high compared to those of two-carbon O-COMs (especially aldehydes). Propanal is considered as tentatively detected due to lack of unblended lines covered in our data. The derived physical properties suggest that acetone, propanal, and ketene have the same origin from hot cores as other O-COMs, while propyne tends to trace the more extended outflows. The acetone-to-methanol ratios are higher in the solid phase than in the gas phase by one order of magnitude, which suggests gas-phase reprocessing after sublimation. There are several suggested formation pathways of acetone (in both ice and gas) from acetaldehyde, ketene, and propylene. The observed ratios between acetone and these three species are rather constant across the sample, and can be well reproduced by astrochemical simulations. Conclusions.On the one hand, the observed high gas-phase abundances of acetone along with dimethyl ether (CH3OCH3) and methyl formate (CH3OCHO) may hint at specific chemical mechanisms that favor the production of ethers, esters, and ketones over alcohols and aldehydes. On the other hand, the overall low gas-phase abundances of aldehydes may result from destruction pathways that are overlooked or underestimated in previous studies. The discussed formation pathways of acetone from acetaldehyde, ketene, and propylene seem plausible from observations and simulations, but more investigations are needed to draw more solid conclusions. We emphasize the importance of studying acetone, which is an abundant COM that deserves more attention in the future.
more »
« less
- Award ID(s):
- 2206516
- PAR ID:
- 10632224
- Publisher / Repository:
- EDP Sciences
- Date Published:
- Journal Name:
- Astronomy & Astrophysics
- Volume:
- 696
- ISSN:
- 0004-6361
- Page Range / eLocation ID:
- A198
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Survey of complex organic molecules in starless and pre-stellar cores in the Perseus molecular cloudABSTRACT Cold ($$\sim$$10 K) and dense ($$\sim 10^{5}$$ cm$$^{-3}$$) cores of gas and dust within molecular clouds, known as starless and dynamically evolved pre-stellar cores, are the birthplaces of low-mass (M$$\le$$ few M$$_\odot$$) stars. As detections of interstellar complex organic molecules, or COMs, in starless cores has increased, abundance comparisons suggest that some COMs might be seeded early in the star formation process and inherited to later stages (i.e. protostellar discs and eventually comets). To date observations of COMs in starless cores have been limited, with most detections reported solely in the Taurus molecular cloud. It is therefore still a question whether different environments affect abundances. We have surveyed 35 starless and pre-stellar cores in the Perseus molecular cloud with the Arizona Radio Observatory (ARO) 12 m telescope detecting both methanol, CH$$_3$$OH, and acetaldehyde, CH$$_3$$CHO, in 100 per cent and 49 per cent of the sample, respectively. In the sub-sample of 15 cores where CH$$_3$$CHO was detected at $$\gt 3\sigma$$ ($$\sim$$18 mK) with the ARO 12 m, follow-up observations with the Yebes 40 m telescope were carried out. Detections of formic acid, t-HCOOH, ketene, H$$_2$$CCO, methyl cyanide, CH$$_3$$CN, vinyl cyanide, CH$$_2$$CHCN, methyl formate, HCOOCH$$_3$$, and dimethyl ether, CH$$_3$$OCH$$_3$$, are seen in at least 20 per cent of the cores. We discuss detection statistics, calculate column densities, and compare abundances across various stages of low-mass star formation. Our findings have more than doubled COM detection statistics in cold cores and show COMs are prevalent in the gas before star and planet formation in the Perseus molecular cloud.more » « less
-
Context. Evidence that the chemical characteristics around low- and high-mass protostars are similar has been found: notably, a variety of carbon-chain species and complex organic molecules (COMs) form around both types. On the other hand, the chemical compositions around intermediate-mass (IM) protostars (2M⊙<m*< 8M⊙) have not been studied with large samples. In particular, it is unclear the extent to which carbon-chain species form around them. Aims. We aim to obtain the chemical compositions of a sample of IM protostars, focusing particularly on carbon-chain species. We also aim to derive the rotational temperatures of HC5N to confirm whether carbon-chain species are formed in the warm gas around these stars. Methods. We conducted Q-band (31.5–50 GHz) line survey observations toward 11 mainly IM protostars with the Yebes 40 m radio telescope. The target protostars were selected from a subsample of the source list of the SOFIA Massive Star Formation project. Assuming local thermodynamic equilibrium, we derived the column densities of the detected molecules and the rotational temperatures of HC5N and CH3OH. Results. Nine carbon-chain species (HC3N, HC5N, C3H, C4Hlinear-H2CCC,cyclic-C3H2, CCS, C3S, and CH3CCH), three COMs (CH3OH, CH3CHO, and CH3CN), H2CCO, HNCO, and four simple sulfur-bearing species (13CS, C34S, HCS+, and H2CS) are detected. The rotational temperatures of HC5N are derived to be ~20–30 K in three IM protostars (Cepheus E, HH288, and IRAS 20293+3952). The rotational temperatures of CH3OH are derived in five IM sources and found to be similar to those of HC5N. Conclusions. The rotational temperatures of HC5N around the three IM protostars are very similar to those around low- and high-mass protostars. These results indicate that carbon-chain molecules are formed in lukewarm gas (~20–30 K) around IM protostars via the warm carbon-chain chemistry process. Thus, carbon-chain formation occurs ubiquitously in the warm gas around protostars across a wide range of stellar masses. Carbon-chain molecules and COMs coexist around most of the target IM protostars, which is similar to the situation for low- and high-mass protostars. In summary, the chemical characteristics around protostars are the same in the low-, intermediate- and high-mass regimes.more » « less
-
Abstract Aldehydes are ubiquitous in star-forming regions and carbonaceous chondrites, serving as essential intermediates in metabolic pathways and molecular mass growth processes to vital biomolecules necessary for the origins of life. However, their interstellar formation mechanisms have remained largely elusive. Here, we unveil the formation of lactaldehyde (CH3CH(OH)CHO) by barrierless recombination of formyl (HĊO) and 1-hydroxyethyl (CH3ĊHOH) radicals in interstellar ice analogs composed of carbon monoxide (CO) and ethanol (CH3CH2OH). Lactaldehyde and its isomers 3-hydroxypropanal (HOCH2CH2CHO), ethyl formate (CH3CH2OCHO), and 1,3-propenediol (HOCH2CHCHOH) are identified in the gas phase utilizing isomer-selective photoionization reflectron time-of-flight mass spectrometry and isotopic substitution studies. These findings reveal fundamental formation pathways for complex, biologically relevant aldehydes through non-equilibrium reactions in interstellar environments. Once synthesized, lactaldehyde can act as a key precursor to critical biomolecules such as sugars, sugar acids, and amino acids in deep space.more » « less
-
Context.In recent times, large organic molecules of exceptional complexity have been found in diverse regions of the interstellar medium. Aims.In this context, we aim to provide accurate frequencies of the ground vibrational state of two key aliphatic aldehydes,n-butanal and its branched-chain isomer, i-butanal, to enable their eventual detection in the interstellar medium. We also want to test the level of complexity that interstellar chemistry can reach in regions of star formation. Methods.We employ a frequency modulation millimeter-wave absorption spectrometer to measure the rotational features ofn- andi-butanal. We analyze the assigned rotational transitions of each rotamer separately using theA-reduced semirigid-rotor Hamiltonian. We use the spectral line survey ReMoCA performed with the Atacama Large Millimeter/submillimeter Array to search forn- andi-butanal toward the star-forming region Sgr B2(N). We also search for both aldehydes toward the molecular cloud G+0.693−0.027 with IRAM 30 m and Yebes 40 m observations. The observational results are compared with computational results from a recent gas-grain astrochemical model. Results.Several thousand rotational transitions belonging to the lowest-energy conformers of two distinct linear and branched isomers have been assigned in the laboratory spectra up to 325 GHz. A precise set of the relevant rotational spectroscopic constants has been determined for each structure as a first step toward identifying both molecules in the interstellar medium. We report non-detections ofn-and i-butanal toward both sources, Sgr B2(N1S) and G+0.693-0.027. We find thatn- andi-butanal are at least 2-6 and 6-18 times less abundant than acetaldehyde toward Sgr B2(N1S), respectively, and thatn-butanal is at least 63 times less abundant than acetaldehyde toward G+0.693−0.027. While propanal is not detected toward Sgr B2(N1S) either, with an abundance at least 5–11 lower than that of acetaldehyde, propanal is found to be 7 times less abundant than acetaldehyde in G+0.693−0.027. Comparison with astrochemical models indicates good agreement between observed and simulated abundances (where available). Grain-surface chemistry appears sufficient to reproduce aldehyde ratios in G+0.693−0.027; gas-phase production may play a more active role in Sgr B2(N1S). Model estimates for the larger aldehydes indicate that the observed upper limits may be close to the underlying values. Conclusions.Our astronomical results indicate that the family of interstellar aldehydes in the Galactic center region is characterized by a drop of one order of magnitude in abundance at each incrementation in the level of molecular complexity.more » « less
An official website of the United States government
