skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 8, 2025

Title: Emotion detection for smart healthcare applications: A CNN-based Maximum A Posterior Estimator of Magnitude-Squared Spectrum approach
The emerging field of smart healthcare has identified emotion detection as a key component in improving patient care, diagnostics, and therapeutic interventions. This paper introduces an innovative approach to emotion detection within the healthcare domain by integrating a Convolutional Neural Network (CNN) with a Maximum A Posterior (MAP) estimator prepared for Magnitude-Squared Spectrum (MSS) analysis. The effectiveness of CNN’s advanced feature extraction capabilities with the statistical strength of MAP estimation offers a promising avenue for interpreting complex physiological signals. The proposed methodology aims to accurately discern and quantify emotional states, thus contributing to the personalization and effectiveness of healthcare services. To validate the efficacy of this approach, the work conducted extensive experiments on a diverse data set composed of physiological signals, demonstrating that the proposed model outperforms existing limitations in emotion recognition tasks. The integration of MSS into CNN frameworks, added with MAP estimation, provides a significant improvement in the detection and analysis of emotions, resulting in more responsive and intelligent healthcare systems. This proposed paper not only presents a novel methodological contribution, but also demonstrates the groundwork for future research toward the intersection of emotional intelligence and healthcare technology.  more » « less
Award ID(s):
2401928
PAR ID:
10632332
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE
Date Published:
ISBN:
979-8-3503-5125-5
Page Range / eLocation ID:
2978 to 2984
Format(s):
Medium: X
Location:
Cape Town, South Africa
Sponsoring Org:
National Science Foundation
More Like this
  1. Unlike the younger population that uses wearables such as smartwatches for monitoring health on a daily basis, elderly people need assistance in the use of technology and interpreting the data obtained through these smart connected frameworks. The current monitoring systems are primarily designed to monitor the physiological signals on a daily basis. The aim of this proposed research, Easy-Assist, is to help older people to maintain their emotional well-being. This research is focused on developing a wearable affective framework, which can help in detecting the emotions of the user in addition to monitoring their physiological signals. The proposed framework can be used in an automated assisted living environment, where the user's emotional state can be balanced using a haptic-based emotional elicitation system after the user's emotion is recognized, detected and interpreted in real-time. The proposed framework is validated using a fall detection algorithm deployed in a custom-built watch wearable, built using off-the-shelf components and an emotion detection framework built using a single board computer. A dataset of 21700 samples acquired using the proposed framework yielded a maximum efficiency of 97.25%, 96 %, and 94 %, in classifying the state and emotion classes into Alert, Active and Normal classes respectively, using multi-class SVM model. The overall latency of the proposed research was in few orders of milli-seconds. 
    more » « less
  2. Electroencephalography (EEG) based systems utilize machine learning (ML) and deep learning (DL) models in various applications such as seizure detection, emotion recognition, cognitive workload estimation, and brain-computer interface (BCI). However, the security and robustness of such intelligent systems under analog-domain threats have received limited attention. This paper presents the first demonstration of physical signal injection attacks on ML and DL models utilizing EEG data. We investigate how an adversary can degrade the performance of different models by non-invasively injecting signals into EEG recordings. We show that the attacks can mislead or manipulate the models and diminish the reliability of EEG-based systems. Overall, this research sheds light on the need for more trustworthy physiological-signal-based intelligent systems in the healthcare field and opens up avenues for future work. 
    more » « less
  3. Emotion detection using machine learning and data gathered from an electroencephalogram (EEG) holds the potential for architecture and creating smart adaptive spaces which can respond to the user's current emotional state detected from the Neurophysiological data in real-time. This technology can help people with mental and physical disabilities to have a greater role in shaping their environment and live more independent lives. In this paper, two different machine learning approaches, the Long Short Term memory network, (LSTM) and Convolutional Neural Network (CNN) are compared in order to assess their potential to satisfy this goal of emotion detection. The LSTM network was trained on eight-channel time-series data which had undergone a Fast Fourier Transform, and the CNN was trained on the un-transformed data in the form of a unique plot-image based approach. 
    more » « less
  4. Recent works have demonstrated the effectiveness of machine learning (ML) techniques in detecting anxiety and stress using physiological signals, but it is unclear whether ML models are learning physiological features specific to stress. To address this ambiguity, we evaluated the generalizability of physiological features that have been shown to be correlated with anxiety and stress to high-arousal emotions. Specifically, we examine features extracted from electrocardiogram (ECG) and electrodermal (EDA) signals from the following three datasets: Anxiety Phases Dataset (APD), Wearable Stress and Affect Detection (WESAD), and the Continuously Annotated Signals of Emotion (CASE) dataset. We aim to understand whether these features are specific to anxiety or general to other high-arousal emotions through a statistical regression analysis, in addition to a within-corpus, cross-corpus, and leave-one-corpus-out cross-validation across instances of stress and arousal. We used the following classifiers: Support Vector Machines, LightGBM, Random Forest, XGBoost, and an ensemble of the aforementioned models. We found that models trained on an arousal dataset perform relatively well on a previously unseen stress dataset, and vice versa. Our experimental results suggest that the evaluated models may be identifying emotional arousal instead of stress. This work is the first cross-corpus evaluation across stress and arousal from ECG and EDA signals, contributing new findings about the generalizability of stress detection. 
    more » « less
  5. null (Ed.)
    Emotion regulation can be characterized by different activities that attempt to alter an emotional response, whether behavioral, physiological or neurological. The two most widely adopted strategies, cognitive reappraisal and expressive suppression are explored in this study, specifically in the context of disgust. Study participants (N = 21) experienced disgust via video exposure, and were instructed to either regulate their emotions or express them freely. If regulating, they were required to either cognitively reappraise or suppress their emotional experiences while viewing the videos. Video recordings of the participants' faces were taken during the experiment and electrocardiogram (ECG), electromyography (EMG), and galvanic skin response (GSR) readings were also collected for further analysis. We compared the participants behavioral (facial musculature movements) and physiological (GSR and heart rate) responses as they aimed to alter their emotional responses and computationally determined that when responding to disgust stimuli, the signals recorded during suppression and free expression were very similar, whereas those recorded during cognitive reappraisal were significantly different. Thus, in the context of this study, from a signal analysis perspective, we conclude that emotion regulation via cognitive reappraisal significantly alters participants' physiological responses to disgust, unlike regulation via suppression. 
    more » « less