When longshore transport systems encounter tidal inlets, complex mechanisms are involved in bypassing sand to downdrift barriers. Here, this process is examined at Plum Island Sound and Essex Inlets, Massachusetts, USA. One major finding from this study is that sand is transferred along the coast—especially at tidal inlets—by parcels, in discrete steps, and over decadal-scale periods. The southerly orientation of the main-ebb channel at Plum Island Sound, coupled with the landward migration of bars from the ebb delta to the central portion of the downdrift Castle Neck barrier island, have formed a beach protuberance. During the constructional phase, sand is sequestered at the protuberance and the spit-end of the barrier becomes sediment starved, leading to shoreline retreat and a broadening of the spit platform at the mouth to Essex Bay (downdrift side of Castle Neck). Storm-induced sand transport from erosion of the spit and across the spit platform is washed into Essex Bay, filling channels and enlarging flood deltas. This study illustrates the pathways and processes of sand transfer along the shoreline of a barrier-island/tidal-inlet system and provides an important example of the processes that future hydrodynamic and sediment-transport modeling should strive to replicate.
more »
« less
This content will become publicly available on June 1, 2026
Updated Stratigraphic Mapping Reveals Insights Into the Late Pleistocene Evolutionary History of the Virginia Eastern Shore, US Mid-Atlantic Coast
Contradictory interpretations of upper Pleistocene (120–40 ka) sedimentary deposits along the US Mid-Atlantic Coast have hindered the development of a reliable regional sea-level curve for the last glacial cycle. This study presents new and compiled sediment cores, ground-penetrating radar, topographic data, aerial imagery, and limited geochronology from geologic units emplaced along the ocean-facing side of the Virginia Eastern Shore during mid- and late-Pleistocene periods of higher-than-present relative sea level: the Accomack Member (Omar Formation), the Butlers Bluff Member (Nassawadox Formation), the Joynes Neck Sand, and the Wachapreague Formation. Minor lithologic and morphologic updates are presented for the MIS 5e/5c Butlers Bluff Member, which is interpreted as a southward-prograding spit emplaced atop penecontemporaneous shoreface sediments or older transgressive sediments which fill the Exmore Paleochannel. The Joynes Neck Sand is reinterpreted as a coastal lag deposit, correlated with the Ironshire Formation in Maryland and Delaware, likely emplaced during MIS 5c. The Wachapreague Formation is determined to be a composite unit composed of two newly mapped members—the Locustville and Upshur Neck—which differ in lithology, internal architecture, and surficial morphology. The older and western Locustville Member (MIS 5a) is characterized by progradational beach and foredune ridges built atop transgressive shoreface and backbarrier deposits, and is correlated with the Sinepuxent Formation in Maryland and Delaware. The younger and eastern Upshur Neck Member of the Wachapreague Formation (late MIS 5a) is distinguished by surficial recurved ridges and preserved washover, dune, and channel-fill structures associated with spit growth atop shoreface deposits. These findings indicate that the Wachapreague Formation was constructed during two sequential highstands: an initial phase of sea-level rise and then fall allowed for deposition of the Locustville Member as a transgressive-highstand-regressive barrier system; and, following a period of lower-than-present sea level, a later highstand resulted in partial erosion of the easternmost Locustville and growth of the Upshur Neck Member. Finally, we update earlier descriptions of an aeolian sand sheet, likely deposited during MIS 3c, that discontinuously overlies most of the east-central Virginia Eastern Shore. Together, these findings update interpretations of the depositional history of the southern Delmarva Peninsula, and allow for future refinement of the sea-level history of the last interglacial-to-glacial period along the mid-field US Mid-Atlantic coast.
more »
« less
- Award ID(s):
- 2244721
- PAR ID:
- 10632406
- Publisher / Repository:
- Micropress
- Date Published:
- Journal Name:
- Stratigraphy
- Volume:
- 22
- Issue:
- 2
- ISSN:
- 1547-139X
- Page Range / eLocation ID:
- 99 to 134
- Subject(s) / Keyword(s):
- Virginia Eastern Shore upper-Pleistocene coastal deposits sea-level change Wachapreague Formation last-interglacial period
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT A pre‐Late Wisconsinan, post‐Illinoian, till sheet has long been recognized in north‐central Iowa, but has not been formally recognized or defined until now. Early researchers referred to these deposits as the ‘Tazewell’, and the term ‘Sheldon Creek’ was more recently used informally by the Iowa Geological Survey in guidebooks and reports. Recent mapping has extended the eastern margin significantly past previous interpretations. The Sheldon Creek Formation has similar lithologic characteristics to the overlying Alden Member of the Dows Formation, and the two units are distinguished mainly by stratigraphic position. Differentiation from underlying Pre‐Illinoian till units is accomplished using lithology, primarily matrix grain‐size and sand fraction lithology. A suite of 22 radiocarbon ages indicate two distinct, separate groupings within the Sheldon Creek data. These data strongly suggest ice advanced south to 42° N twice, once during Marine Isotope Stage (MIS) 3 and again during late MIS 3 or possibly early MIS 2. The presence of the Laurentide Ice Sheet in northern Iowa during MIS 3 has significant implications for ice sheet reconstructions during this interval.more » « less
-
A global database of marine isotope substage 5a and 5c marine terraces and paleoshoreline indicatorsAbstract. In this review we compile and document the elevation, indicative meaning, and chronology of marine isotope substage 5a and 5c sea level indicatorsfor 39 sites within three geographic regions: the North American Pacific coast, the North American Atlantic coast and the Caribbean, and theremaining globe. These relative sea level indicators, comprised of geomorphic indicators such as marine and coral reef terraces, eolianites, andsedimentary marine- and terrestrial-limiting facies, facilitate future investigation into marine isotope substage 5a and 5c interstadial paleo-sealevel reconstruction, glacial isostatic adjustment, and Quaternary tectonic deformation. The open-access database, presented in the format of theWorld Atlas of Last Interglacial Shorelines (WALIS) database, can be found at https://doi.org/10.5281/zenodo.5021306 (Thompson and Creveling, 2021).more » « less
-
Abstract Valdivia Bank is an oceanic plateau in the South Atlantic formed by hot spot magmatism at the Mid‐Atlantic Ridge during the Late Cretaceous. It is part of the Walvis Ridge, an aseismic ridge and seamount chain widely considered to be formed by age‐progressive volcanism from the Tristan‐Gough plume. To better understand the formation and history of this edifice, we developed a bathymetric map of Valdivia Bank by merging available multibeam echosounder data sets with a bathymetry grid based mainly on satellite altimetry (SRTM15+). The bathymetric map reveals previously unresolved features including extensive rift grabens, volcanic mounds and knolls, and large‐scale sediment transport systems. After Valdivia Bank was emplaced and probably eroded at sea level, it underwent a period of rifting, followed by a secondary magmatic pulse that caused regional uplift to sea‐level, followed by subsidence to current depths. Shallow banks at depths of ∼1,000 m are the result of a thick sediment pile atop uplifted volcanic crust. Several shallower mounds (∼1,000–520 m) and a guyot (∼220 m) likely resulted from coral reef growth atop one or more volcanic pedestals formed during the younger Cenozoic magmatic event. As sediments accumulated on the shallow platforms, sediment transport systems developed as gullies, channels and mass transport deposits carved valleys and troughs, shedding sediment into abyssal fans at the plateau base. The new bathymetric map demonstrates that oceanic plateaus are geologically active long after initial emplacement.more » « less
-
Glacial isostatic adjustment (GIA) simulations using earth models that vary viscoelastic structure with depth alone cannot simultaneously fit geographic trends in the elevation of marine isotope stage (MIS) 5a relative sea level (RSL) indicators across continental North America and the Caribbean and yield conflicting estimates of global mean sea level (GMSL). We present simulations with a GIA model that incorporates three-dimensional (3-D) variation in North American viscoelastic earth structure constructed by combining high-resolution seismic tomographic imaging with a new method for mapping this imaging into lateral variations in lithospheric thickness and mantle viscosity. We pair this earth model with a global ice history based on updated constraints on ice volume and geometry. The GIA prediction provides the first simultaneous reconciliation of MIS 5a North American and Caribbean RSL highstands and strengthens arguments that MIS 5a peak GMSL reached values close to that of the Last Interglacial. This result highlights the necessity of incorporating realistic 3-D earth structure into GIA predictions with continent-scale RSL data sets.more » « less
An official website of the United States government
