Abstract Tidal marshes form at the confluence between estuarine and marine environments where tidal movement regulates their developmental processes. Here, we investigate how the interplay between tides, channel morphology, and vegetation affect sediment dynamics in a low energy tidal marsh at the Paul S. Sarbanes Ecosystem Restoration Project at Poplar Island. Poplar Island is an active restoration site where fine‐grained material dredged from navigation channels in the upper Chesapeake Bay are being used to restore remote tidal marsh habitat toward the middle bay (Maryland, USA). Tidal currents were measured over multiple tidal cycles in the inlets and tidal creeks of one marsh at Poplar Island, Cell 1B, using Acoustic Doppler Current Profilers (ADCP) to estimate water fluxes throughout the marsh complex. Sediment fluxes were estimated using acoustic backscatter recorded by ADCPs and validated against total suspended solid measurements taken on site. A high‐resolution geomorphic survey was conducted to capture channel cross sections and tidal marsh morphology. We integrated simple numerical models built in Delft3d with empirical observations to identify which eco‐geomorphological factors influence sediment distribution in various channel configurations with differing vegetative characteristics. Channel morphology influences flood‐ebb dominance in marshes, where deep, narrow channels promote high tidal velocities and incision, increasing sediment suspension and reducing resilience in marshes at Poplar Island. Our numerical models suggest that accurately modelling plant phenology is vital for estimating sediment accretion rates. In‐situ observations indicate that Poplar Island marshes are experiencing erosion typical for many Chesapeake Bay islands. Peak periods of sediment suspension frequently coincide with the largest outflows of water during ebb tides resulting in large sediment deficits. Ebb dominance (net sediment export) in tidal marshes is likely amplified by sea‐level rise and may lower marsh resilience. We couple field observations with numerical models to understand how tidal marsh morphodynamics contribute to marsh resilience. © 2019 John Wiley & Sons, Ltd.
more »
« less
Following the Sand Grains
When longshore transport systems encounter tidal inlets, complex mechanisms are involved in bypassing sand to downdrift barriers. Here, this process is examined at Plum Island Sound and Essex Inlets, Massachusetts, USA. One major finding from this study is that sand is transferred along the coast—especially at tidal inlets—by parcels, in discrete steps, and over decadal-scale periods. The southerly orientation of the main-ebb channel at Plum Island Sound, coupled with the landward migration of bars from the ebb delta to the central portion of the downdrift Castle Neck barrier island, have formed a beach protuberance. During the constructional phase, sand is sequestered at the protuberance and the spit-end of the barrier becomes sediment starved, leading to shoreline retreat and a broadening of the spit platform at the mouth to Essex Bay (downdrift side of Castle Neck). Storm-induced sand transport from erosion of the spit and across the spit platform is washed into Essex Bay, filling channels and enlarging flood deltas. This study illustrates the pathways and processes of sand transfer along the shoreline of a barrier-island/tidal-inlet system and provides an important example of the processes that future hydrodynamic and sediment-transport modeling should strive to replicate.
more »
« less
- Award ID(s):
- 2022934
- PAR ID:
- 10427522
- Date Published:
- Journal Name:
- Journal of Marine Science and Engineering
- Volume:
- 10
- Issue:
- 5
- ISSN:
- 2077-1312
- Page Range / eLocation ID:
- 631
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract. We investigate the controls upon the shape of freely extending spits using a one-contour-line model of shoreline evolution. In contrast to existing frameworks that suggest that spits are oriented in the direction of alongshore sediment transport and that wave refraction around the spit end is the primary cause of recurving, our results suggest that spit shoreline shapes are perhaps best understood as graded features arising from a complex interplay between distinct morphodynamic elements: the headland updrift of the spit, the erosive "neck" (which may be overwashing), and the depositional "hook". Between the neck and the hook lies a downdrift-migrating "fulcrum point" which tends towards a steady-state trajectory set by the angle of maximum alongshore sediment transport. Model results demonstrate that wave climate characteristics affect spit growth; however, we find that the rate of headland retreat exerts a dominant control on spit shape, orientation, and progradation rate. Interestingly, as a spit forms off of a headland, the rate of sediment input to the spit itself emerges through feedbacks with the downdrift spit end, and in many cases faster spit progradation may coincide with reduced sediment input to the spit itself. Furthermore, as the depositional hook rests entirely beyond the maximum in alongshore sediment transport, this shoreline reach is susceptible to high-angle wave instability throughout and, as a result, spit depositional signals may be highly autogenic.more » « less
-
Abstract. Barrier islands are low-lying coastal landforms vulnerable toinundation and erosion by sea level rise. Despite their socioeconomic andecological importance, their future morphodynamic response to sea level riseor other hazards is poorly understood. To tackle this knowledge gap, weoutline and describe the BarrieR Inlet Environment (BRIE) model that cansimulate long-term barrier morphodynamics. In addition to existing overwashand shoreface formulations, BRIE accounts for alongshore sediment transport,inlet dynamics, and flood–tidal delta deposition along barrier islands.Inlets within BRIE can open, close, migrate, merge with other inlets, andbuild flood–tidal delta deposits. Long-term simulations reveal complexemergent behavior of tidal inlets resulting from interactions with sea levelrise and overwash. BRIE also includes a stratigraphic module, whichdemonstrates that barrier dynamics under constant sea level rise rates canresult in stratigraphic profiles composed of inlet fill, flood–tidal delta,and overwash deposits. In general, the BRIE model represents a process-basedexploratory view of barrier island morphodynamics that can be used toinvestigate long-term risks of flooding and erosion in barrier environments.For example, BRIE can simulate barrier island drowning in cases in which theimposed sea level rise rate is faster than the morphodynamic response of thebarrier island.more » « less
-
Beaches and inlets throughout the U.S. have been stabilized for purposes of navigation, erosion mitigation, and economic resilience, commonly leading to changes in shoreline dynamics and downdrift erosion/accretion patterns. The developed beach of Plum Island, Massachusetts is highly dynamic, experiencing regular complex erosion / accretion patterns along much of the shoreline. We analyzed > 100 years of high-water line positions derived from satellite imagery, t-sheets, historical maps, and aerial photography. Unlike most beaches, the river-proximal sections of Plum Island are not uniformly retreating. Rather, the beach undergoes short-term erosion, followed by periods of accretion and return to a long-term mean stable shoreline position. These cycles occur over different time frames and in different segments of the beach, creating an ephemeral erosion ‘hotspot’ lasting as briefly as one year. The highly dynamic and spatially diverse nature of erosion along Plum Island provides insight into the complex nature of coupled inlet-beach dynamics over multiple timescales.more » « less
-
Abstract Seagrass provides a wide range of economically and ecologically valuable ecosystem services, with shoreline erosion control often listed as a key service, but can also alter the sediment dynamics and waves within back‐barrier bays. Here we incorporate seagrass dynamics into an existing barrier‐marsh exploratory model, GEOMBEST++, to examine the coupled interactions of the back‐barrier bay with both adjacent (marsh) and nonadjacent (barrier island) subsystems. While seagrass reduces marsh edge erosion rates and increases progradation rates in many of our 288 model simulations, seagrass surprisingly increases marsh edge erosion rates when sediment export from the back‐barrier basin is negligible because the ability of seagrass to reduce the volume of marsh sediment eroded matters little for back‐barrier basins in which all sediment is conserved. Our model simulations also suggest that adding seagrass to the bay subsystem leads to increased deposition in the bay, reduced sediment available to the marsh, and enhanced marsh edge erosion until the bay reaches a new, shallower equilibrium depth. In contrast, removing seagrass liberates previously sequestered sediment that is then delivered to the marsh, leading to enhanced marsh progradation. Lastly, we find that seagrass reduces barrier island migration rates in the absence of back‐barrier marsh by filling accommodation space in the bay. These model observations suggest that seagrass meadows operate as dynamic sources and sinks of sediment that can influence the evolution of coupled marsh and barrier island landforms in unanticipated ways.more » « less
An official website of the United States government

