skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 2, 2026

Title: Rising global temperatures reduce soil microbial diversity over the long term
Soil microbial diversity is crucial to sustaining ecosystem productivity and improving carbon sequestration. Global temperature continues to rise, but how climate warming affects microbial diversity and its capacity to sequester soil organic carbon (SOC) remains uncertain. Here, by conducting a global meta-analysis with 251 paired observations from 102 studies, we showed that, on average, warming reduced bacterial and fungal diversity (measured by richness and Shannon index) by 16.0 and 19.7%, respectively, and SOC by 18.1%. The negative responses of both soil bacterial and fungal diversity to warming became more pronounced with increasing warming magnitude, experimental duration, and decreasing soil nitrogen availability. Under the worst-case climate warming scenario (2010 to 2070, 3.4 increase in °C), soil bacterial diversity and fungal diversity are projected to reduce by 56% and 81%, respectively, over 60 y. Importantly, in addition to the direct impact of warming on SOC, warming-induced declines in microbial diversity also contributed to SOC losses. We highlight that prolonged warming could substantially reduce soil microbial diversity and decrease SOC sequestration, accelerating future warming and underscoring the urgent need for decisive actions to mitigate global climate change.  more » « less
Award ID(s):
2021898
PAR ID:
10632408
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
PNAS
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
122
Issue:
35
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Giovannoni, Stephen J; Weedon, James (Ed.)
    ABSTRACT Rapid climate change in the Arctic is altering microbial structure and function, with important consequences for the global ecosystem. Emerging evidence suggests organisms in higher trophic levels may also influence microbial communities, but whether warming alters these effects is unclear. Wolf spiders are dominant Arctic predators whose densities are expected to increase with warming. These predators have temperature-dependent effects on decomposition via their consumption of fungal-feeding detritivores, suggesting they may indirectly affect the microbial structure as well. To address this, we used a fully factorial mesocosm experiment to test the effects of wolf spider density and warming on litter microbial structure in Arctic tundra. We deployed replicate litter bags at the surface and belowground in the organic soil profile and analyzed the litter for bacterial and fungal community structure, mass loss, and nutrient characteristics after 2 and 14 months. We found there were significant interactive effects of wolf spider density and warming on fungal but not bacterial communities. Specifically, higher wolf spider densities caused greater fungal diversity under ambient temperature but lower fungal diversity under warming at the soil surface. We also observed interactive treatment effects on fungal composition belowground. Wolf spider density influenced surface bacterial composition, but the effects did not change with warming. These findings suggest a widespread predator can have indirect, cascading effects on litter microbes and that effects on fungi specifically shift under future expected levels of warming. Overall, our study highlights that trophic interactions may play important, albeit overlooked, roles in driving microbial responses to warming in Arctic terrestrial ecosystems. IMPORTANCEThe Arctic contains nearly half of the global pool of soil organic carbon and is one of the fastest warming regions on the planet. Accelerated decomposition of soil organic carbon due to warming could cause positive feedbacks to climate change through increased greenhouse gas emissions; thus, changes in ecological dynamics in this region are of global relevance. Microbial structure is an important driver of decomposition and is affected by both abiotic and biotic conditions. Yet how activities of soil-dwelling organisms in higher trophic levels influence microbial structure and function is unclear. In this study, we demonstrate that predicted changes in abundances of a dominant predator and warming interactively affect the structure of litter-dwelling fungal communities in the Arctic. These findings suggest predators may have widespread, indirect cascading effects on microbial communities, which could influence ecosystem responses to future climate change. 
    more » « less
  2. Abstract Global soil organic carbon (SOC) stocks may decline with a warmer climate. However, model projections of changes in SOC due to climate warming depend on microbially-driven processes that are usually parameterized based on laboratory incubations. To assess how lab-scale incubation datasets inform model projections over decades, we optimized five microbially-relevant parameters in the Microbial-ENzyme Decomposition (MEND) model using 16 short-term glucose (6-day), 16 short-term cellulose (30-day) and 16 long-term cellulose (729-day) incubation datasets with soils from forests and grasslands across contrasting soil types. Our analysis identified consistently higher parameter estimates given the short-term versus long-term datasets. Implementing the short-term and long-term parameters, respectively, resulted in SOC loss (–8.2 ± 5.1% or –3.9 ± 2.8%), and minor SOC gain (1.8 ± 1.0%) in response to 5 °C warming, while only the latter is consistent with a meta-analysis of 149 field warming observations (1.6 ± 4.0%). Comparing multiple subsets of cellulose incubations (i.e., 6, 30, 90, 180, 360, 480 and 729-day) revealed comparable projections to the observed long-term SOC changes under warming only on 480- and 729-day. Integrating multi-year datasets of soil incubations (e.g., > 1.5 years) with microbial models can thus achieve more reasonable parameterization of key microbial processes and subsequently boost the accuracy and confidence of long-term SOC projections. 
    more » « less
  3. Vegetation change of the Arctic tundra due to global warming is a well-known process, but the implication for the belowground microbial communities, key in nutrient cycling and decomposition, is poorly understood. We characterized the fungal and bacterial abundances in litter and soil layers across 16 warming experimental sites at 12 circumpolar locations. We investigated the relationship between microbial abundances and nitrogen (N) and carbon (C) isotopic signatures, indicating shifts in microbial processes with warming. Microbial abundances were 2–3 orders of magnitude larger in litter than in soil. Local, site-dependent responses of microbial abundances were variable, and no general effect of warming was detected. The only generalizable trend across sites was a dependence between the warming response ratios and C:N ratio in controls, highlighting a legacy of the vegetation on the microbial response to warming. We detected a positive effect of warming on the litter mass and δ 15 N, which was linked to bacterial abundance under warmed conditions. This effect was stronger in experimental sites dominated by deciduous shrubs, suggesting an altered bacterial N-cycling with increased temperatures, mediated by the vegetation, and with possible consequences on ecosystem feedbacks to climate change. 
    more » « less
  4. Global warming is expected to significantly impact the soil fungal and bacterial microbiomes, yet the predominant ecological response of microbial taxa—whether an increase, decrease, or no change—remains unclear. It is also unknown whether microbial taxa from different evolutionary lineages exhibit common patterns and what factors drive these changes. Here, we analyzed three mid‐term (> 5 years) warming experiments across contrasting dryland and temperate‐boreal ecosystems, encompassing over 500 topsoil samples collected across multiple time points. We found that warming altered the relative abundance of microbial taxa, with both increases and decreases over time. For instance, the relative abundance of bacterial and fungal taxa responding to warming (increase or decrease) accounted for 35.9% and 42.9% in the dryland ecosystem, respectively. Notably, taxa within the same phylum exhibited divergent responses to warming. These ecological shifts were linked to factors such as photosynthetic cover and fungal lifestyle, both of which influence soil functions. Overall, our findings indicate that soil warming can reshape a significant fraction of the microbial community across ecosystems, potentially driving changes in soil functions. 
    more » « less
  5. Summary Dead fungal mycelium (necromass) represents a critical component of soil carbon (C) and nutrient cycles. Assessing how the microbial communities associated with decomposing fungal necromass change as global temperatures rise will help in determining how these belowground organic matter inputs contribute to ecosystem responses.In this study, we characterized the structure of bacterial and fungal communities associated with multiple types of decaying mycorrhizal fungal necromass incubated within mesh bags across a 9°C whole ecosystem temperature enhancement in a boreal peatland.We found major taxonomic and functional shifts in the microbial communities present on decaying mycorrhizal fungal necromass in response to warming. These changes were most pronounced in hollow microsites, which showed convergence towards the necromass‐associated microbial communities present in unwarmed hummocks. We also observed a high colonization of ericoid mycorrhizal fungal necromass by fungi from the same genera as the necromass.These results indicate that microbial communities associated with mycorrhizal fungal necromass decomposition are likely to change significantly with future climate warming, which may have strong impacts on soil biogeochemical cycles in peatlands. Additionally, the high enrichment of congeneric fungal decomposers on ericoid mycorrhizal necromass may help to explain the increase in ericoid shrub dominance in warming peatlands. 
    more » « less