We report on growth and electrical properties of α-Ga 2 O 3 films prepared by halide vapor phase epitaxy (HVPE) at 500 °C on α-Cr 2 O 3 buffers predeposited on sapphire by magnetron sputtering. The α-Cr 2 O 3 buffers showed a wide microcathodoluminescence (MCL) peak near 350 nm corresponding to the α-Cr 2 O 3 bandgap and a sharp MCL line near 700 nm due to the Cr + intracenter transition. Ohmic contacts to Cr 2 O 3 were made with both Ti/Au or Ni, producing linear current–voltage ( I– V) characteristics over a wide temperature range with an activation energy of conductivity of ∼75 meV. The sign of thermoelectric power indicated p-type conductivity of the buffers. Sn-doped, 2- μm-thick α-Ga 2 O 3 films prepared on this buffer by HVPE showed donor ionization energies of 0.2–0.25 eV, while undoped films were resistive with the Fermi level pinned at E C of 0.3 eV. The I– V and capacitance–voltage ( C– V) characteristics of Ni Schottky diodes on Sn-doped samples using a Cr 2 O 3 buffer indicated the presence of two face-to-face junctions, one between n-Ga 2 O 3 and p-Cr 2 O 3 , the other due to the Ni Schottky diode with n-Ga 2 O 3 . The spectral dependence of the photocurrent measured on the structure showed the presence of three major deep traps with optical ionization thresholds near 1.3, 2, and 2.8 eV. Photoinduced current transient spectroscopy spectra of the structures were dominated by deep traps with an ionization energy of 0.95 eV. These experiments suggest another pathway to obtain p–n heterojunctions in the α-Ga 2 O 3 system.
more »
« less
Using Highly Functional Cr 2 O 3 Interfacial Layer to Enhance the Electrical Performance of Au/InP Schottky Diodes
Abstract Herein, the significant impact of the spin‐coated Cr2O3interface layer on the electrical properties and performance characteristics of Au/undoped‐InP (Au/InP) Schottky diodes (SD) is reported. The material characterization of spin‐coated Cr2O3films using a wide variety of analytical techniques, namely, atomic force microscopy, field emission scanning electron microscope, X‐ray diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopy, indicate the formation of hexagonal phase, nanocrystalline, and stoichiometric Cr2O3on InP. Optical absorption measurements reveal a bandgap of ≈3.5 eV. In‐depth analyses and detailed measurements of current‐voltage (I–V) and capacitance‐voltage (C‐V) employed to assess the interface characteristics and electrical performance of the Au/InP (SD) versus Au/Cr2O3/InP (MIS) devices. Compared to SD, MIS revealed superior rectifying properties. Indicating that the Cr2O3interface layer significantly influences the barrier height (ΦBH) of SD, the estimated ΦBH(0.64 eV (I–V)/0.86 eV (C‐V)) is higher than that of SD (0.57 eV (I–V)/0.67 eV (C‐V)). In addition, Cheungs and Nordes' methods are used to obtain the ΦBH, ideality factor (n), and series resistance (RS). The equivalent ΦBHvalues obtained from current–voltage, Cheungs, and Nordes methods demonstrate stability and dependability in addition to validating their superior characteristics of MIS devices. The interface state density (NSS) for MIS is lower than the SD's, indicating that the effectiveness of Cr2O3layer significantly reduces NSS. Analyses to probe the mechanism demonstrate that, in SD and MIS, the Schottky emission controls the higher bias area, while the Poole‐Frenkel emission dominates the reverse conduction mechanism at the lower bias region. The present work convincingly demonstrates the potential application of the Cr2O3interfacial layer in delivering the enhanced performance and contributes to the progression of electrical devices for emerging electronics and energy‐related applications.
more »
« less
- Award ID(s):
- 1827745
- PAR ID:
- 10632500
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Advanced Electronic Materials
- Volume:
- 11
- Issue:
- 12
- ISSN:
- 2199-160X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Reducing the Schottky barrier height and Fermi level de‐pinning in metal‐organic semiconductor contacts are crucial for enhancing the performance of organic transistors. The reduction of the Schottky barrier height in bottom‐contact top‐gate organic transistors is demonstrated by adding 1 nm thick atomic layer deposited Al2O3on the source and drain contacts. By using two different donor‐acceptor copolymers, bothp‐andn‐type transistors are investigated. Temperature‐dependent current–voltage measurements from non‐treated, self‐assembled monolayer treated, and Al2O3treated Au source‐drain contact field‐effect transistors with varying channel lengths are carried out. The drain current versus drain voltage near zero gate voltage, which may be described by the thermionic emission model at temperatures above 150 K, allows the estimation of the Schottky barrier height (φB). The Al2O3contact‐treated transistors show more than 40% lowerφBcompared with the non‐treated contacts in thep‐type transistor. Similarly, an isoindigo‐based transistor, withn‐type transport, shows a reduction inφBwith Al2O3treated contacts suggesting that such ultrathin oxide layers provide a universal method for reducing the barrier height.more » « less
-
Ultrawide bandgap β-(Al x Ga 1 −x ) 2 O 3 vertical Schottky barrier diodes on (010) β-Ga 2 O 3 substrates are demonstrated. The β-(Al x Ga 1 −x ) 2 O 3 epilayer has an Al composition of 21% and a nominal Si doping of 2 × 10 17 cm −3 grown by molecular beam epitaxy. Pt/Ti/Au has been employed as the top Schottky contact, whereas Ti/Au has been utilized as the bottom Ohmic contact. The fabricated devices show excellent rectification with a high on/off ratio of ∼10 9 , a turn-on voltage of 1.5 V, and an on-resistance of 3.4 mΩ cm 2 . Temperature-dependent forward current-voltage characteristics show effective Schottky barrier height varied from 0.91 to 1.18 eV while the ideality factor from 1.8 to 1.1 with increasing temperatures, which is ascribed to the inhomogeneity of the metal/semiconductor interface. The Schottky barrier height was considered a Gaussian distribution of potential, where the extracted mean barrier height and a standard deviation at zero bias were 1.81 and 0.18 eV, respectively. A comprehensive analysis of the device leakage was performed to identify possible leakage mechanisms by studying temperature-dependent reverse current-voltage characteristics. At reverse bias, due to the large Schottky barrier height, the contributions from thermionic emission and thermionic field emission are negligible. By fitting reverse leakage currents at different temperatures, it was identified that Poole–Frenkel emission and trap-assisted tunneling are the main leakage mechanisms at high- and low-temperature regimes, respectively. Electrons can tunnel through the Schottky barrier assisted by traps at low temperatures, while they can escape these traps at high temperatures and be transported under high electric fields. This work can serve as an important reference for the future development of ultrawide bandgap β-(Al x Ga 1 −x ) 2 O 3 power electronics, RF electronics, and ultraviolet photonics.more » « less
-
The thermal stability of n/n + β -Ga 2 O 3 epitaxial layer/substrate structures with sputtered ITO on both sides to act as rectifying contacts on the lightly doped layer and Ohmic on the heavily doped substrate is reported. The resistivity of the ITO deposited separately on Si decreased from 1.83 × 10 −3 Ω.cm as-deposited to 3.6 × 10 −4 Ω.cm after 300 °C anneal, with only minor reductions at higher temperatures (2.8 × 10 −4 Ω.cm after 600 °C anneals). The Schottky barrier height also decreased with annealing, from 0.98 eV in the as-deposited samples to 0.85 eV after 500 °C annealing. The reverse breakdown voltage exhibited a negative temperature coefficient of −0.46 V.C −1 up to an annealing temperature of 400 °C and degraded faster at higher temperatures. Transmission Electron Microscopy showed significant reaction at the ITO and Ga 2 O 3 interface above 300 °C, with a very degraded contact stack after annealing at 500 °C.more » « less
-
The effects of downstream plasma exposure with O 2 , N 2 or CF 4 discharges on Si-doped Ga 2 O 3 Schottky diode forward and reverse current-voltage characteristics were investigated. The samples were exposed to discharges with rf power of 50 W plasma at a pressure of 400 mTorr and a fixed treatment time of 1 min to simulate dielectric layer removal, photoresist ashing or surface cleaning steps. Schottky contacts were deposited through a shadow mask after exposure to avoid any changes to the surface. A Schottky barrier height of 1.1 eV was obtained for the reference sample without plasma treatment, with an ideality factor of 1.0. The diodes exposed to CF 4 showed a 0.25 V shift from the I–V of the reference sample due to a Schottky barrier height lowering around 14%. The diodes showed a decrease of Schottky barrier height of 2.5 and 6.5% with O 2 or N 2 treatments, respectively. The effect of plasma exposure on the ideality factor of diodes treated with these plasmas was minimal; 0.2% for O 2 and N 2 , 0.3% for CF 4 , respectively. The reverse leakage currents were 1.2, 2.2 and 4.8 μ A cm −2 for the diodes treated with O 2 , and CF 4 , and N 2 respectively. The effect of downstream plasma treatment on diode on-resistance and on-off ratio were also minimal. The changes observed are much less than caused by exposure to hydrogen-containing plasmas and indicate that downstream plasma stripping of films from Ga 2 O 3 during device processing is a relatively benign approach.more » « less
An official website of the United States government

