Epitaxial growth of κ-phase Ga 2 O 3 thin films is investigated on c-plane sapphire, GaN- and AlN-on-sapphire, and (100) oriented yttria stabilized zirconia (YSZ) substrates via metalorganic chemical vapor deposition. The structural and surface morphological properties are investigated by comprehensive material characterization. Phase pure κ-Ga 2 O 3 films are successfully grown on GaN-, AlN-on-sapphire, and YSZ substrates through a systematical tuning of growth parameters including the precursor molar flow rates, chamber pressure, and growth temperature, whereas the growth on c-sapphire substrates leads to a mixture of β- and κ-polymorphs of Ga 2 O 3 under the investigated growth conditions. The influence of the crystalline structure, surface morphology, and roughness of κ-Ga 2 O 3 films grown on different substrates are investigated as a function of precursor flow rate. High-resolution scanning transmission electron microscopy imaging of κ-Ga 2 O 3 films reveals abrupt interfaces between the epitaxial film and the sapphire, GaN, and YSZ substrates. The growth of single crystal orthorhombic κ-Ga 2 O 3 films is confirmed by analyzing the scanning transmission electron microscopy nanodiffraction pattern. The chemical composition, surface stoichiometry, and bandgap energies of κ-Ga 2 O 3 thin films grown on different substrates are studied by high-resolution x-ray photoelectron spectroscopy (XPS) measurements. The type-II (staggered) band alignments at three interfaces between κ-Ga 2 O 3 and c-sapphire, AlN, and YSZ substrates are determined by XPS, with an exception of κ-Ga 2 O 3 /GaN interface, which shows type-I (straddling) band alignment.
more »
« less
Effect of Thermal Oxidation on the Structure, Surface Texturing, and Microstructure Evolution in Nanocrystalline Ga─O─N Films
Abstract An extensive examination of the nanoscale, crystallographic growth dynamics of the system, which is impacted by the thermal energy given to the GaN, is carried out to derive a deeper understanding of the growth kinetics, morphology and microstructure evolution, chemical bonding, and optical properties of Ga─O─N films. Thermal annealing of GaN films is performed in the temperature range of 900–1200 °C. Crystal structure, phase formation, chemical composition, surface morphology, and microstructure evolution of Ga─O─N films are investigated as a function of temperature. Increasing temperature induces surface oxidation, which results in the formation of stable β‐Ga2O3phase in the GaN matrix, where the overall film composition evolves from nitride (GaN) to oxynitride (Ga─O─N). While GaN surfaces are smooth, planar, and featureless, oxidation induced granular‐to‐rod shaped morphology evolution is seen with increasing temperature to 1200 °C. The considerable texturing and stability of the nanocrystalline Ga─O─N on Si substrates can be attributed to the surface and interface driven modification because of thermal treatment. Corroborating with structure and chemical changes, Raman spectroscopic analyses also indicate that the chemical bonding evolution progresses from fully Ga─N bonds to Ga─O─N. While the GaN oxidation process starts with the formation of β‐Ga2O3at an annealing temperature of 1000 °C, higher annealing temperatures induce structural distortion with the potential formation of Ga─O─N bonds. The structure‐phase‐chemical composition correlation, which will be useful for nanocrystalline materials for selective optoelectronic applications, is established in Ga─O─N films made by thermal treatment of GaN.
more »
« less
- Award ID(s):
- 1827745
- PAR ID:
- 10632509
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Advanced Materials Interfaces
- Volume:
- 12
- Issue:
- 5
- ISSN:
- 2196-7350
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Beta-phase gallium oxide ([Formula: see text]-Ga 2 O 3 ) is a promising semiconductor for high frequency, high temperature, and high voltage applications. In addition to the [Formula: see text]-phase, numerous other polymorphs exist and understanding the competition between phases is critical to control practical devices. The phase formation sequence of Ga 2 O 3 , starting from amorphous thin films, was determined using lateral-gradient laser spike annealing at peak temperatures of 500–1400 °C on 400 μs to 10 ms timescales, with transformations characterized by optical microscopy, x-ray diffraction, and transmission electron microscopy (TEM). The resulting phase processing map showed the [Formula: see text]-phase, a defect-spinel structure, first nucleating under all annealing times for temperatures from 650 to 800 °C. The cross-sectional TEM at the onset of the [Formula: see text]-phase formation showed nucleation near the film center with no evidence of heterogeneous nucleation at the interfaces. For temperatures above 850 °C, the thermodynamically stable [Formula: see text]-phase was observed. For anneals of 1–4 ms and temperatures below 1200 °C, small randomly oriented grains were observed. Large grains were observed for anneals below 1 ms and above 1200 °C, with anneals above 4 ms and 1200 °C resulting in textured films. The formation of the [Formula: see text]-phase prior to [Formula: see text]-phase, coupled with the observed grain structure, suggests that the [Formula: see text]-phase is kinetically preferred during thermal annealing of amorphous films, with [Formula: see text]-phase subsequently forming by nucleation at higher temperatures. The low surface energy of the [Formula: see text]-phase implied by these results suggests an explanation for the widely observed [Formula: see text]-phase inclusions in [Formula: see text]-phase Ga 2 O 3 films grown by a variety of synthesis methods.more » « less
-
Halide vapor phase epitaxial (HVPE) Ga 2 O 3 films were grown on c-plane sapphire and diamond substrates at temperatures up to 550 °C without the use of a barrier dielectric layer to protect the diamond surface. Corundum phase α-Ga 2 O 3 was grown on the sapphire substrates, whereas the growth on diamond resulted in regions of nanocrystalline β-Ga 2 O 3 (nc-β-Ga 2 O 3 ) when oxygen was present in the HVPE reactor only during film growth. X-ray diffraction confirmed the growth of α-Ga 2 O 3 on sapphire but failed to detect any β-Ga 2 O 3 reflections from the films grown on diamond. These films were further characterized via Raman spectroscopy, which revealed the β-Ga 2 O 3 phase of these films. Transmission electron microscopy demonstrated the nanocrystalline character of these films. From cathodoluminescence spectra, three emission bands, UVL′, UVL, and BL, were observed for both the α-Ga 2 O 3 /sapphire and nc-Ga 2 O 3 /diamond, and these bands were centered at approximately 3.7, 3.2, and 2.7 eV.more » « less
-
β-Ga 2 O 3 is an emerging ultra-wide bandgap semiconductor, holding a tremendous potential for power-switching devices for next-generation high power electronics. The performance of such devices strongly relies on the precise control of electrical properties of β-Ga 2 O 3 , which can be achieved by implantation of dopant ions. However, a detailed understanding of the impact of ion implantation on the structure of β-Ga 2 O 3 remains elusive. Here, using aberration-corrected scanning transmission electron microscopy, we investigate the nature of structural damage in ion-implanted β-Ga 2 O 3 and its recovery upon heat treatment with the atomic-scale spatial resolution. We reveal that upon Sn ion implantation, Ga 2 O 3 films undergo a phase transformation from the monoclinic β-phase to the defective cubic spinel [Formula: see text]-phase, which contains high-density antiphase boundaries. Using the planar defect models proposed for the [Formula: see text]-Al 2 O 3 , which has the same space group as β-Ga 2 O 3 , and atomic-resolution microscopy images, we identify that the observed antiphase boundaries are the {100}1/4 ⟨110⟩ type in cubic structure. We show that post-implantation annealing at 1100 °C under the N 2 atmosphere effectively recovers the β-phase; however, nano-sized voids retained within the β-phase structure and a [Formula: see text]-phase surface layer are identified as remanent damage. Our results offer an atomic-scale insight into the structural evolution of β-Ga 2 O 3 under ion implantation and high-temperature annealing, which is key to the optimization of semiconductor processing conditions for relevant device design and the theoretical understanding of defect formation and phase stability.more » « less
-
The (Sm x Ga 1−x ) 2 O 3 alloy system is a potential new dielectric for compound semiconductors such as GaAs. Using molecular beam epitaxy under metal-modulated growth conditions, we grew the binary oxide, Sm 2 O 3 , at two substrate temperatures (100 and 500 °C) and optimized the structural, morphological, and electrical properties of the films. Decreasing the Sm cell temperature suppressed the formation of the monoclinic phase and promoted the growth of the cubic phase. Next, the ternary oxide, (Sm x Ga 1−x ) 2 O 3 , was deposited to investigate the effects of Ga incorporation. Optimization experiments were used to determine the effects of substrate temperature and samarium cell temperature (i.e., growth rate) on film stoichiometry, phase distribution, and microstructure in these films. Films grown at 500 °C showed significant surface roughness and the presence of multiple crystalline phases. Since all of the Sm-based oxides (i.e., samarium oxide with and without gallium) were found to have unbonded Sm metal, annealing experiments were carried out in oxygen and forming gas to determine the effects of annealing on film stoichiometry. The motivation behind annealing in forming gas was to see whether this commonly used technique for reducing interface densities could improve the film quality. GaAs metal-oxide-semiconductor diodes with (Sm x Ga 1−x ) 2 O 3 showed breakdown fields at 1 mA/cm 2 of 4.35 MV/cm, which decreased with increasing Sm unbonded metal content in the films.more » « less
An official website of the United States government

