ABSTRACT Galaxy clusters accrete mass through large-scale, strong, structure-formation shocks. Such a virial shock is thought to deposit fractions ξe and ξB of the thermal energy in cosmic-ray electrons (CREs) and magnetic fields, respectively, thus generating a leptonic virial ring. However, the expected synchrotron signal was not convincingly established until now. We stack low-frequency radio data from the OVRO-LWA around the 44 most massive, high latitude, extended MCXC clusters, enhancing the ring sensitivity by rescaling clusters to their characteristic, R500 radii. Both high (73 MHz) and co-added low (36–68 MHz) frequency channels separately indicate a significant (4–5σ) excess peaked at (2.4–2.6)R500, coincident with a previously stacked Fermi γ-ray signal interpreted as inverse-Compton emission from virial-shock CREs. The stacked radio signal is well fit (TS-test: 4–6σ at high frequency, 4–8σ at low frequencies, and 8–10σ joint) by virial-shock synchrotron emission from the more massive clusters, with $$\dot{m}\xi _e\xi _B\simeq (1\!-\!4)\times 10^{-4}$$, where $$\dot{m}\equiv \dot{M}/(MH)$$ is the dimensionless accretion rate for a cluster of mass M and a Hubble constant H. The inferred CRE spectral index is flat, p ≃ 2.0 ± 0.2, consistent with acceleration in a strong shock. Assuming equipartition or using $$\dot{m}\xi _e\sim 0.6~{{\ \rm per\ cent}}$$ inferred from the Fermi signal yields $$\xi _B\simeq (2\!-\!9)~{{\ \rm per\ cent}}$$, corresponding to B ≃ (0.1–0.3) $$\mu$$G magnetic fields downstream of typical virial shocks. Preliminary evidence suggests non-spherical shocks, with factor 2–3 elongations.
more »
« less
This content will become publicly available on August 19, 2026
Machine Learning Approach for Estimating Magnetic Field Strength in Galaxy Clusters from Synchrotron Emission
Abstract Magnetic fields play a crucial role in various astrophysical processes within the intracluster medium, including heat conduction, cosmic-ray acceleration, and the generation of synchrotron radiation. However, measuring magnetic field strength is typically challenging due to the limited availability of Faraday rotation measure sources. To address the challenge, we propose a novel method that employs Convolutional Neural Networks (CNNs) alongside synchrotron emission observations to estimate magnetic field strengths in galaxy clusters. Our CNN model is trained on either magnetohydrodynamic (MHD) turbulence simulations or MHD galaxy cluster simulations, which incorporate complex dynamics such as cluster mergers and sloshing motions. The results demonstrate that CNNs can effectively estimate magnetic field strengths with mean-squared error of approximately 0.135µG2, 0.044µG2, and 0.02µG2forβ = 100, 200, and 500 conditions, respectively. Additionally, we have confirmed that our CNN model remains robust against noise and variations in viewing angles with sufficient training, ensuring reliable performance under a wide range of observational conditions. We compare the CNN approach with the traditional magnetic field strength estimate method that assumes equipartition between cosmic-ray electron energy and magnetic field energy. In contrast to the equipartition method, this CNN approach relies on the morphological feature of synchrotron images, offering a new perspective for complementing traditional estimates and enhancing our understanding of cosmic-ray acceleration mechanisms.
more »
« less
- Award ID(s):
- 2307840
- PAR ID:
- 10632550
- Publisher / Repository:
- Astrophysical Journal
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 989
- Issue:
- 2
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 217
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Context. Tycho ’s supernova remnant (SNR) is associated with the historical supernova (SN) event SN 1572 of Type Ia. The explosion occurred in a relatively clean environment, and was visually observed, providing an age estimate. This SNR therefore represents an ideal astrophysical test-bed for the study of cosmic-ray acceleration and related phenomena. A number of studies suggest that shock acceleration with particle feedback and very efficient magnetic-field amplification combined with Alfvénic drift are needed to explain the rather soft radio spectrum and the narrow rims observed in X-rays. Aims. We show that the broadband spectrum of Tycho ’s SNR can alternatively be well explained when accounting for stochastic acceleration as a secondary process. The re-acceleration of particles in the turbulent region immediately downstream of the shock should be efficient enough to impact particle spectra over several decades in energy. The so-called Alfvénic drift and particle feedback on the shock structure are not required in this scenario. Additionally, we investigate whether synchrotron losses or magnetic-field damping play a more profound role in the formation of the non-thermal filaments. Methods. We solved the full particle transport equation in test-particle mode using hydrodynamic simulations of the SNR plasma flow. The background magnetic field was either computed from the induction equation or follows analytic profiles, depending on the model considered. Fast-mode waves in the downstream region provide the diffusion of particles in momentum space. Results. We show that the broadband spectrum of Tycho can be well explained if magnetic-field damping and stochastic re-acceleration of particles are taken into account. Although not as efficient as standard diffusive shock acceleration, stochastic acceleration leaves its imprint on the particle spectra, which is especially notable in the emission at radio wavelengths. We find a lower limit for the post-shock magnetic-field strength ∼330 μ G, implying efficient amplification even for the magnetic-field damping scenario. Magnetic-field damping is necessary for the formation of the filaments in the radio range, while the X-ray filaments are shaped by both the synchrotron losses and magnetic-field damping.more » « less
-
Abstract One of the main theories for heating of the solar corona is based on the idea that solar convection shuffles and tangles magnetic field lines to make many small-scale current sheets that, via reconnection, heat coronal loops. S. K. Tiwari et al. present evidence that, besides depending on loop length and other factors, the brightness of a coronal loop depends on the field strength in the loop’s feet and the freedom of convection in the feet. While it is known that strong solar magnetic fields suppress convection, the decrease in the speed of horizontal advection of magnetic flux with increasing field strength has not been quantified before. We quantify that trend by analyzing 24 hr of Helioseismic Magnetic Imager-SHARP vector magnetograms of each of six sunspot-active regions and their surroundings. Using Fourier local correlation tracking, we estimate the horizontal advection speed of the magnetic flux at each pixel in which the vertical component of the magnetic field strength (Bz) is well above (≥150 G) noise level. We find that the average horizontal advection speed of magnetic flux steadily decreases asBzincreases, from 110 ± 3 m s−1for 150 G (in network and plage) to 10 ± 4 m s−1for 2500 G (in sunspot umbra). The trend is well fit by a fourth-degree polynomial. These results quantitatively confirm the expectation that magnetic flux advection is suppressed by increasing magnetic field strength. The presented quantitative relation should be useful for future MHD simulations of coronal heating.more » « less
-
Abstract Cosmic rays (CRs) interact with turbulent magnetic fields in the interstellar medium (ISM), generating nonthermal emission. After many decades of studies, the theoretical understanding of their diffusion in the ISM continues to pose a challenge. This study numerically explores a recent prediction termed “mirror diffusion” and its synergy with the traditional diffusion mechanism based on gyroresonant scattering. Our study combines 3D MHD simulations of star-forming regions with test particle simulations to analyze CR diffusion. We demonstrate the significance of mirror diffusion in CR diffusion parallel to the magnetic field when the mirroring condition is satisfied. Our results support the theoretical expectation that the resulting particle propagation arising from mirror diffusion in combination with much faster diffusion induced by gyroresonant scattering resembles a Levy-flight-like propagation. Our study highlights the necessity to reevaluate the diffusion coefficients traditionally adopted in the ISM based on gyroresonant scattering alone. For instance, our simulations imply a diffusion coefficient ∼1027cm2s–1for particles with a few hundred TeV within regions spanning a few parsecs around the source. This estimate is in agreement with gamma-ray observations, which show the relevance of our results for the understanding of gamma-ray emission in star-forming regions.more » « less
-
The nonresonant cosmic ray instability, predicted by Bell (2004), is thought to play an important role in the acceleration and confinement of cosmic rays (CRs) close to supernova remnants. Despite its importance, the exact mechanism responsible for the saturation of the instability has not been determined, and there is no first-principle prediction for the amplitude of the saturated magnetic field. Using a survey of self-consistent kinetic hybrid simulations (with kinetic ions and fluid electrons), we study the saturation of the non-resonant streaming instability as a function of the parameters of both the thermal background plasma and the CR population. The strength of the saturated magnetic field has important implications for both CR acceleration in supernova remnants and CR diffusion in the Galaxy.more » « less
An official website of the United States government
