skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 1, 2026

Title: Curvature-Aware Derivative-Free Optimization
The paper discusses derivative-free optimization (DFO), which involves minimizing a function without access to gradients or directional derivatives, only function evaluations. Classical DFO methods such as Nelder-Mead and direct search have limited scalability for high-dimensional problems. Zeroth-order methods, which mimic gradient-based methods, have been gaining popularity due to the demands of large-scale machine learning applications. This paper focuses on the selection of the step size $$\alpha_k$$ in such methods. The proposed approach, called Curvature-Aware Random Search (CARS), uses first- and second-order finite difference approximations to compute a candidate $$\alpha_+$$. A safeguarding step then evaluates $$\alpha_+$$ and chooses an alternate step size in case $$\alpha_+$$ does not decrease the objective function. We prove that for strongly convex objective functions, CARS converges linearly provided that the search direction is drawn from a distribution satisfying very mild conditions. We also present a Cubic Regularized variant of CARS, named CARS-CR, which provably converges at a rate of $O(1/k)$ without the assumption of strong convexity. Numerical experiments show that CARS and CARS-CR match or exceed the state-of-the-art on benchmark problem sets.  more » « less
Award ID(s):
2304489
PAR ID:
10632626
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Journal of Scientific Computing
Volume:
103
Issue:
2
ISSN:
0885-7474
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We develop a projected Nesterov’s proximal-gradient (PNPG) approach for sparse signal reconstruction that combines adaptive step size with Nesterov’s momentum acceleration. The objective function that we wish to minimize is the sum of a convex differentiable data-fidelity (negative log-likelihood (NLL)) term and a convex regularization term. We apply sparse signal regularization where the signal belongs to a closed convex set within the closure of the domain of the NLL; the convex-set constraint facilitates flexible NLL domains and accurate signal recovery. Signal sparsity is imposed using the ℓ₁-norm penalty on the signal’s linear transform coefficients. The PNPG approach employs a projected Nesterov’s acceleration step with restart and a duality-based inner iteration to compute the proximal mapping. We propose an adaptive step-size selection scheme to obtain a good local majorizing function of the NLL and reduce the time spent backtracking. Thanks to step-size adaptation, PNPG converges faster than the methods that do not adjust to the local curvature of the NLL. We present an integrated derivation of the momentum acceleration and proofs of O(k⁻²) objective function convergence rate and convergence of the iterates, which account for adaptive step size, inexactness of the iterative proximal mapping, and the convex-set constraint. The tuning of PNPG is largely application independent. Tomographic and compressed-sensing reconstruction experiments with Poisson generalized linear and Gaussian linear measurement models demonstrate the performance of the proposed approach. 
    more » « less
  2. We propose adaptive, line search-free second-order methods with optimal rate of convergence for solving convex-concave min-max problems. By means of an adaptive step size, our algorithms feature a simple update rule that requires solving only one linear system per iteration, eliminating the need for line search or backtracking mechanisms. Specifically, we base our algorithms on the optimistic method and appropriately combine it with second-order information. Moreover, distinct from common adaptive schemes, we define the step size recursively as a function of the gradient norm and the prediction error in the optimistic update. We first analyze a variant where the step size requires knowledge of the Lipschitz constant of the Hessian. Under the additional assumption of Lipschitz continuous gradients, we further design a parameter-free version by tracking the Hessian Lipschitz constant locally and ensuring the iterates remain bounded. We also evaluate the practical performance of our algorithm by comparing it to existing second-order algorithms for minimax optimization. 
    more » « less
  3. In this work, we study first-order algorithms for solving Bilevel Optimization (BO) where the objective functions are smooth but possibly nonconvex in both levels and the variables are restricted to closed convex sets. As a first step, we study the landscape of BO through the lens of penalty methods, in which the upper- and lower-level objectives are combined in a weighted sum with penalty parameter . In particular, we establish a strong connection between the penalty function and the hyper-objective by explicitly characterizing the conditions under which the values and derivatives of the two must be -close. A by-product of our analysis is the explicit formula for the gradient of hyper-objective when the lower-level problem has multiple solutions under minimal conditions, which could be of independent interest. Next, viewing the penalty formulation as -approximation of the original BO, we propose first-order algorithms that find an -stationary solution by optimizing the penalty formulation with . When the perturbed lower-level problem uniformly satisfies the {\it small-error} proximal error-bound (EB) condition, we propose a first-order algorithm that converges to an -stationary point of the penalty function using in total accesses to first-order stochastic gradient oracles. Under an additional assumption on stochastic oracles, we show that the algorithm can be implemented in a fully {\it single-loop} manner, {\it i.e.,} with samples per iteration, and achieves the improved oracle-complexity of . 
    more » « less
  4. Ramanan, Kavita (Ed.)
    The paper concerns the stochastic approximation recursion, \[ \theta_{n+1}= \theta_n + \alpha_{n + 1} f(\theta_n, \Phi_{n+1}) \,,\quad n\ge 0, \] where the {\em estimates} $$\{ \theta_n\} $$ evolve on $$\Re^d$$, and $$\bfPhi \eqdef \{ \Phi_n \}$$ is a stochastic process on a general state space, satisfying a conditional Markov property that allows for parameter-dependent noise. In addition to standard Lipschitz assumptions and conditions on the vanishing step-size sequence, it is assumed that the associated \textit{mean flow} $$ \ddt \odestate_t = \barf(\odestate_t)$$ is globally asymptotically stable, with stationary point denoted $$\theta^*$$. The main results are established under additional conditions on the mean flow and an extension of the Donsker-Varadhan Lyapunov drift condition known as~(DV3): (i) A Lyapunov function is constructed for the joint process $$\{\theta_n,\Phi_n\}$$ that implies convergence of the estimates in $$L_4$$. (ii) A functional central limit theorem (CLT) is established, as well as the usual one-dimensional CLT for the normalized error. Moment bounds combined with the CLT imply convergence of the normalized covariance $$\Expect [ z_n z_n^\transpose ]$$ to the asymptotic covariance $$\SigmaTheta$$ in the CLT, where $$z_n\eqdef (\theta_n-\theta^*)/\sqrt{\alpha_n}$$. (iii) The CLT holds for the normalized averaged parameters $$\zPR_n\eqdef \sqrt{n} (\thetaPR_n -\theta^*)$$, with $$\thetaPR_n \eqdef n^{-1} \sum_{k=1}^n\theta_k$$, subject to standard assumptions on the step-size. Moreover, the covariance of $$\zPR_n$$ converges to $$\SigmaPR$$, the minimal covariance of Polyak and Ruppert. (iv) An example is given where $$f$$ and $$\barf$$ are linear in $$\theta$$, and $$\bfPhi$$ is a geometrically ergodic Markov chain but does not satisfy~(DV3). While the algorithm is convergent, the second moment of $$\theta_n$$ is unbounded and in fact diverges. 
    more » « less
  5. null (Ed.)
    Federated Learning (FL) is an emerging learning scheme that allows different distributed clients to train deep neural networks together without data sharing. Neural networks have become popular due to their unprecedented success. To the best of our knowledge, the theoretical guarantees of FL concerning neural networks with explicit forms and multi-step updates are unexplored. Nevertheless, training analysis of neural networks in FL is non-trivial for two reasons: first, the objective loss function we are optimizing is non-smooth and non-convex, and second, we are even not updating in the gradient direction. Existing convergence results for gradient descent-based methods heavily rely on the fact that the gradient direction is used for updating. This paper presents a new class of convergence analysis for FL, Federated Learning Neural Tangent Kernel (FL-NTK), which corresponds to over-paramterized ReLU neural networks trained by gradient descent in FL and is inspired by the analysis in Neural Tangent Kernel (NTK). Theoretically, FL-NTK converges to a global-optimal solution at a linear rate with properly tuned learning parameters. Furthermore, with proper distributional assumptions, FL-NTK can also achieve good generalization. 
    more » « less