skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on February 1, 2026

Title: The Effect of Vaccination on the Competitive Advantage of Two Strains of an Infectious Disease
We investigate the impact of differential vaccine effectiveness, waning immunity, and natural cross-immunity on the capacity for vaccine-induced strain replacement in two-strain models of infectious disease spread. We focus specifically on the case where the first strain is more transmissible but the second strain is more immune-resistant. We consider two cases on vaccine-induced immunity: (1) a monovalent model where the second strain has immune escape with respect to vaccination; and (2) a bivalent model where the vaccine remains equally effective against both strains. Our analysis reaffirms the capacity for vaccine-induced strain replacement under a variety of circumstances; surprisingly, however, we find that which strain is preferred depends sensitively on the degree of differential vaccine effectiveness. In general, the monovalent model favors the more immune-resistant strain at high vaccination levels while the bivalent model favors the more transmissible strain at high vaccination levels. To further investigate this phenomenon, we parametrize the bifurcation space between the monovalent and bivalent model.  more » « less
Award ID(s):
2213390
PAR ID:
10632671
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Bulletin of Mathematical Biology
Volume:
87
Issue:
2
ISSN:
0092-8240
Subject(s) / Keyword(s):
Epidemiology Mathematical modeling Immune escape Vaccination Waning immunity
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Wallqvist, Anders (Ed.)
    The SARS-CoV-2 pandemic has generated a considerable number of infections and associated morbidity and mortality across the world. Recovery from these infections, combined with the onset of large-scale vaccination, have led to rapidly-changing population-level immunological landscapes. In turn, these complexities have highlighted a number of important unknowns related to the breadth and strength of immunity following recovery or vaccination. Using simple mathematical models, we investigate the medium-term impacts of waning immunity against severe disease on immuno-epidemiological dynamics. We find that uncertainties in the duration of severity-blocking immunity (imparted by either infection or vaccination) can lead to a large range of medium-term population-level outcomes (i.e. infection characteristics and immune landscapes). Furthermore, we show that epidemiological dynamics are sensitive to the strength and duration of underlying host immune responses; this implies that determining infection levels from hospitalizations requires accurate estimates of these immune parameters. More durable vaccines both reduce these uncertainties and alleviate the burden of SARS-CoV-2 in pessimistic outcomes. However, heterogeneity in vaccine uptake drastically changes immune landscapes toward larger fractions of individuals with waned severity-blocking immunity. In particular, if hesitancy is substantial, more robust vaccines have almost no effects on population-level immuno-epidemiology, even if vaccination rates are compensatorily high among vaccine-adopters. This pessimistic scenario for vaccination heterogeneity arises because those few individuals that are vaccine-adopters are so readily re-vaccinated that the duration of vaccinal immunity has no appreciable consequences on their immune status. Furthermore, we find that this effect is heightened if vaccine-hesitants have increased transmissibility (e.g. due to riskier behavior). Overall, our results illustrate the necessity to characterize both transmission-blocking and severity-blocking immune time scales. Our findings also underline the importance of developing robust next-generation vaccines with equitable mass vaccine deployment. 
    more » « less
  2. null (Ed.)
    In the face of vaccine dose shortages and logistical challenges, various deployment strategies are being proposed to increase population immunity levels to SARS-CoV-2. Two critical issues arise: how will the timing of delivery of the second dose affect both infection dynamics and prospects for the evolution of viral immune escape via a build-up of partially immune individuals. Both hinge on the robustness of the immune response elicited by a single dose, compared to natural and two-dose immunity. Building on an existing immuno-epidemiological model, we find that in the short-term, focusing on one dose generally decreases infections, but longer-term outcomes depend on this relative immune robustness. We then explore three scenarios of selection and find that a one-dose policy may increase the potential for antigenic evolution under certain conditions of partial population immunity. We highlight the critical need to test viral loads and quantify immune responses after one vaccine dose, and to ramp up vaccination efforts throughout the world. 
    more » « less
  3. null (Ed.)
    Abstract Background When three SARS-CoV-2 vaccines came to market in Europe and North America in the winter of 2020–2021, distribution networks were in a race against a major epidemiological wave of SARS-CoV-2 that began in autumn 2020. Rapid and optimized vaccine allocation was critical during this time. With 95% efficacy reported for two of the vaccines, near-term public health needs likely require that distribution is prioritized to the elderly, health care workers, teachers, essential workers, and individuals with comorbidities putting them at risk of severe clinical progression. Methods We evaluate various age-based vaccine distributions using a validated mathematical model based on current epidemic trends in Rhode Island and Massachusetts. We allow for varying waning efficacy of vaccine-induced immunity, as this has not yet been measured. We account for the fact that known COVID-positive cases may not have been included in the first round of vaccination. And, we account for age-specific immune patterns in both states at the time of the start of the vaccination program. Our analysis assumes that health systems during winter 2020–2021 had equal staffing and capacity to previous phases of the SARS-CoV-2 epidemic; we do not consider the effects of understaffed hospitals or unvaccinated medical staff. Results We find that allocating a substantial proportion (>75 % ) of vaccine supply to individuals over the age of 70 is optimal in terms of reducing total cumulative deaths through mid-2021. This result is robust to different profiles of waning vaccine efficacy and several different assumptions on age mixing during and after lockdown periods. As we do not explicitly model other high-mortality groups, our results on vaccine allocation apply to all groups at high risk of mortality if infected. A median of 327 to 340 deaths can be avoided in Rhode Island (3444 to 3647 in Massachusetts) by optimizing vaccine allocation and vaccinating the elderly first. The vaccination campaigns are expected to save a median of 639 to 664 lives in Rhode Island and 6278 to 6618 lives in Massachusetts in the first half of 2021 when compared to a scenario with no vaccine. A policy of vaccinating only seronegative individuals avoids redundancy in vaccine use on individuals that may already be immune, and would result in 0.5% to 1% reductions in cumulative hospitalizations and deaths by mid-2021. Conclusions Assuming high vaccination coverage (>28 % ) and no major changes in distancing, masking, gathering size, hygiene guidelines, and virus transmissibility between 1 January 2021 and 1 July 2021 a combination of vaccination and population immunity may lead to low or near-zero transmission levels by the second quarter of 2021. 
    more » « less
  4. The emergence of multiple strains of SARS-COV-2 has made it complicated to predict and control the COVID-19 pandemic. Although some vaccines have been effective in reducing the severity of the disease, these vaccines are designed for a specific strain of the virus and are usually less effective for other strains. In addition, the waning of vaccine-induced immunity, reinfection of recovered people, and incomplete vaccination are challenging to the vaccination program. In this study, we developed a detailed model to describe the multi-strain transmission dynamics of COVID-19 under vaccination. We implemented our model to examine the impact of inter-strain transmission competition under vaccination on the critical outbreak indicators: hospitalized cases, undiagnosed cases, basic reproduction numbers, and the overtake-time by a new strain to the existing strain. In particular, our results on the dependence of the overtake-time on vaccination rates, progression-to-infectious rate, and relative transmission rates provide helpful information for managing a pandemic with circulating two strains. Furthermore, our results suggest that a reduction in the relative transmission rates and a decrease in vaccination dropout rates or an increase in vaccination rates help keep the reproduction number of both strains below unity and keep the number of hospitalized cases and undiagnosed cases at their lowest levels. Moreover, our analysis shows that the second and booster-dose vaccinations are useful for further reducing the reproduction number. 
    more » « less
  5. Read, Andrew Fraser (Ed.)
    Two of the Coronavirus Disease 2019 (COVID-19) vaccines currently approved in the United States require 2 doses, administered 3 to 4 weeks apart. Constraints in vaccine supply and distribution capacity, together with a deadly wave of COVID-19 from November 2020 to January 2021 and the emergence of highly contagious Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants, sparked a policy debate on whether to vaccinate more individuals with the first dose of available vaccines and delay the second dose or to continue with the recommended 2-dose series as tested in clinical trials. We developed an agent-based model of COVID-19 transmission to compare the impact of these 2 vaccination strategies, while varying the temporal waning of vaccine efficacy following the first dose and the level of preexisting immunity in the population. Our results show that for Moderna vaccines, a delay of at least 9 weeks could maximize vaccination program effectiveness and avert at least an additional 17.3 (95% credible interval [CrI]: 7.8–29.7) infections, 0.69 (95% CrI: 0.52–0.97) hospitalizations, and 0.34 (95% CrI: 0.25–0.44) deaths per 10,000 population compared to the recommended 4-week interval between the 2 doses. Pfizer-BioNTech vaccines also averted an additional 0.60 (95% CrI: 0.37–0.89) hospitalizations and 0.32 (95% CrI: 0.23–0.45) deaths per 10,000 population in a 9-week delayed second dose (DSD) strategy compared to the 3-week recommended schedule between doses. However, there was no clear advantage of delaying the second dose with Pfizer-BioNTech vaccines in reducing infections, unless the efficacy of the first dose did not wane over time. Our findings underscore the importance of quantifying the characteristics and durability of vaccine-induced protection after the first dose in order to determine the optimal time interval between the 2 doses. 
    more » « less