Plant-microbe interactions are critical to ecosystem resilience and substantially influence crop production. From the perspective of plant science, two important focus areas concerning plant-microbe interactions include: 1) understanding plant molecular mechanisms involved in plant-microbe interfaces and 2) engineering plants for increasing plant disease resistance or enhancing beneficial interactions with microbes to increase their resilience to biotic and abiotic stress conditions. Molecular biology and genetics approaches have been used to investigate the molecular mechanisms underlying plant responses to various beneficial and pathogenic microbes. While these approaches are valuable for elucidating the functions of individual genes and pathways, they fall short of unraveling the complex cross-talk across pathways or systems that plants employ to respond and adapt to environmental stresses. Also, genetic engineering of plants to increase disease resistance or enhance symbiosis with microbes has mainly been attempted or conducted through targeted manipulation of single genes/pathways of plants. Recent advancements in synthetic biology tool development are paving the way for multi-gene characterization and engineering in plants in relation to plant-microbe interactions. Here, we briefly summarize the current understanding of plant molecular pathways involved in plant interactions with beneficial and pathogenic microorganisms. Then, we highlight the progress in applying plant synthetic biology to elucidate the molecular basis of plant responses to microbes, enhance plant disease resistance, engineer synthetic symbiosis, and conduct in situ microbiome engineering. Lastly, we discuss the challenges, opportunities, and future directions for advancing plant-microbe interactions research using the capabilities of plant synthetic biology.
more »
« less
This content will become publicly available on June 11, 2026
Plant Individuality: A Physiological Approach
While plants provide some of the most interesting cases for individuality-related problems in philosophy of biology (e.g., Clarke 2012; Gerber 2018), no work has examined plant individuality through specifically focusing on physiological processes, a lacuna this paper aims to fill. We think that different domains of biology suggest different approaches, and our specific focus on physiological processes, such as plant hormone systems and source-sink balance regulations, will help to identify coordinated systems at different scales. Identifying physiological individuals is crucial for a wide range of research in plant biology, including research on plant nutrition, transport and accumulation of nutrients in edible parts, and plant responses to various stress conditions such as plant diseases and changing abiotic conditions. Although plants do produce systemic responses to local stimuli (e.g., a sudden wound on one leaf can result in a whole-plant response), considering them as individuals is (often) problematic. They are highly modular organisms, and they can grow vegetatively, constituting clones of what seem, superficially, to be individual organisms. Moreover, as with animals, there are problems raised by their symbiotic relations to micro-organisms, most notably the mycorrhiza, through which they may be connected to other plants. We argue that coordinated plant systems can be distinguished at multiple scales from a physiological perspective. While none of these is a unit that must be necessarily called “the individual,” they offer integrated approaches for various research problems in plant science.
more »
« less
- Award ID(s):
- 2240749
- PAR ID:
- 10632680
- Publisher / Repository:
- Philosophy, Theory, and Practice in Biology
- Date Published:
- Journal Name:
- Philosophy, Theory, and Practice in Biology
- Edition / Version:
- https://doi.org/10.3998/ptpbio.5261
- Volume:
- 17
- Issue:
- 1
- ISSN:
- 2475-3025
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Since the Industrial Revolution began approximately 200 years ago, global atmospheric carbon dioxide concentration ([CO2]) has increased from 270 to 401 µL L−1, and average global temperatures have risen by 0.85°C, with the most pronounced effects occurring near the poles (IPCC, 2013). In addition, the last 30 years were the warmest decades in 1,400 years (PAGES 2k Consortium, 2013). By the end of this century, [CO2] is expected to reach at least 700 µL L−1, and global temperatures are projected to rise by 4°C or more based on greenhouse gas scenarios (IPCC, 2013). Precipitation regimes also are expected to shift on a regional scale as the hydrologic cycle intensifies, resulting in greater extremes in dry versus wet conditions (Medvigy and Beaulieu, 2012). Such changes already are having profound impacts on the physiological functioning of plants that scale up to influence interactions between plants and other organisms and ecosystems as a whole (Fig. 1). Shifts in climate also may alter selective pressures on plants and, therefore, have the potential to influence evolutionary processes. In some cases, evolutionary responses can occur as rapidly as only a few generations (Ward et al., 2000; Franks et al., 2007; Lau and Lennon, 2012), but there is still much to learn in this area, as pointed out by Franks et al. (2014). Such responses have the potential to alter ecological processes, including species interactions, via ecoevolutionary feedbacks (Shefferson and Salguero-Gómez, 2015). In this review, we discuss microevolutionary and macroevolutionary processes that can shape plant responses to climate change as well as direct physiological responses to climate change during the recent geologic past as recorded in the fossil record. We also present work that documents how plant physiological and evolutionary responses influence interactions with other organisms as an example of how climate change effects on plants can scale to influence higher order processes within ecosystems. Thus, this review combines findings in plant physiological ecology and evolutionary biology for a comprehensive view of plant responses to climate change, both past and present.more » « less
-
Orphan Genes (OGs) are a mysterious class of genes that have recently gained significant attention. Despite lacking a clear evolutionary history, they are found in nearly all living organisms, from bacteria to humans, and they play important roles in diverse biological processes. The discovery of OGs was first made through comparative genomics followed by the identification of unique genes across different species. OGs tend to be more prevalent in species with larger genomes, such as plants and animals, and their evolutionary origins remain unclear but potentially arise from gene duplication, horizontal gene transfer (HGT), or de novo origination. Although their precise function is not well understood, OGs have been implicated in crucial biological processes such as development, metabolism, and stress responses. To better understand their significance, researchers are using a variety of approaches, including transcriptomics, functional genomics, and molecular biology. This review offers a comprehensive overview of the current knowledge of OGs in all domains of life, highlighting the possible role of dark transcriptomics in their evolution. More research is needed to fully comprehend the role of OGs in biology and their impact on various biological processes.more » « less
-
SUMMARY As sessile organisms, plants are finely tuned to respond dynamically to developmental, circadian and environmental cues. Genome‐wide studies investigating these types of cues have uncovered the intrinsically different ways they can impact gene expression over time. Recent advances in single‐cell sequencing and time‐based bioinformatic algorithms are now beginning to reveal the dynamics of these time‐based responses within individual cells and plant tissues. Here, we review what these techniques have revealed about the spatiotemporal nature of gene regulation, paying particular attention to the three distinct ways in which plant tissues are time sensitive. (i) First, we discuss how studying plant cell identity can reveal developmental trajectories hidden in pseudotime. (ii) Next, we present evidence that indicates that plant cell types keep their own local time through tissue‐specific regulation of the circadian clock. (iii) Finally, we review what determines the speed of environmental signaling responses, and how they can be contingent on developmental and circadian time. By these means, this review sheds light on how these different scales of time‐based responses can act with tissue and cell‐type specificity to elicit changes in whole plant systems.more » « less
-
Facing stress and producing stress responses are crucial aspects of an organism’s life and the evolution of both its species and of the other species in its environment, which are co-evolving with it. Philosophers and biologists emphasize the importance of environmental complexity and how organisms deal with it in evolution of cognitive processes. This article adds to these discussions by highlighting the importance of stress physiology in processes connected to plant cognition. While this article supports the thesis that life means cognizing (i.e., sensing the environment, arranging internal processes according to that perception, and affecting the environment with its actions), it also emphasizes that there are various kinds of organisms. In this regard, plant cognition is not animal cognition. However, given both the variety and continuity in evolutionary processes and the similarities even between the distantly related organisms in the tree of life, I argue that it is usually useful to consider and compare physiological and molecular mechanisms in plants and animals as well as the concepts and research processes in animal and plant science. Although the “pathological complexity” thesis that Veit (2023) presents is fruitful in considering the evolution of consciousness and cognition, I argue that, when thinking of biological processes in relation to cognition, stress can be a helpful concept (maybe even as suitable as pathological complexity) in thinking of organisms’ responses to environmental complexity and their adaptation and acclimation processes.more » « less
An official website of the United States government
