skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Phylogenomics of Fresh and Formalin Specimens Resolves the Systematics of Old World Mud Snakes (Serpentes: Homalopsidae) and Expands Biogeographic Inference
Our knowledge of the biodiversity of Asia and Australasia continues to expand with more focused studies on systematics of various groups and their biogeography. Historically, fluctuating sea levels and cyclic connection and separation of now-disjunct landmasses have been invoked to explain the accumulation of biodiversity via species pump mechanisms. However, recent research has shown that geological shifts of the mainland and species dispersal events may be better explanations of the biodiversity in these regions. We investigate these processes using the poorly studied and geographically widespread Mud Snakes (Serpentes: Homalopsidae) using a target capture approach of ~4,800 nuclear loci from fresh tissues and supplemental mitochondrial data from formalin tissues from museum specimens. We use these datasets to reconstruct the first resolved phylogeny of the group, identify their biogeographic origins, and test hypotheses regarding the roles of sea-level change and habitat selection on their diversification. Divergence dating and ancestral range estimation yielded support for an Oligocene origin and diversification from mainland Southeast Asia and Sundaland in the rear-fanged group ~20 million years ago, followed by eastward and westward dispersal. GeoHiSSE models indicate that niche expansion of ancestral, rear-fanged lineages into aquatic environments did not impact their diversification rates. Our results highlight that Pleistocene sea-level changes and habitat specificity did not primarily lead to the extant species richness of Homalopsidae and that, alternatively, geological shifts in mainland Southeast Asia may have been a major driver of diversity in this group. We also emphasize the importance of using fresh and degraded tissues, and both nuclear and mitochondrial DNA, for filling knowledge gaps in poorly known but highly diverse and conceptually important groups. Here, Homalopsidae represents a non-traditional but effective model study system for understanding transitions between terrestrial, marine, and freshwater environments.  more » « less
Award ID(s):
1654388
PAR ID:
10632860
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Society for the Study of Systematic Biology
Date Published:
Journal Name:
Bulletin of the Society of Systematic Biologists
Volume:
2
Issue:
1
ISSN:
2768-0819
Page Range / eLocation ID:
1 to 24
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Divergence dating analyses in systematics provide a framework to develop and test biogeographic hypotheses regarding speciation. However, as molecular datasets grow from multilocus to genomic, sample sizes decrease due to computational burdens, and the testing of fine-scale biogeographic hypotheses becomes difficult. In this study, we use coalescent demographic models to investigate the diversification of poorly known rice paddy snakes from Southeast Asia (Homalopsidae:Hypsiscopus), which have conflicting dates of origin based on previous studies. We use coalescent modeling to test the hypothesis thatHypsiscopusdiversified 2.5 mya during the Khorat Plateau uplift in Thailand. Additionally, we use ecological niche analyses to identify potential differences in the niche space of the two most widely distributed species in the past and present. Our results suggestHypsiscopusdiversified ~ 2.4 mya, supporting that the Khorat Plateau may have initiated the diversification of rice paddy snakes. We also find significant niche differentiation and shifts between species ofHypsiscopus, indicating that environmental differences may have sustained differentiation of this genus after the Khorat Plateau uplift. Our study expands on the diversification history of snakes in Southeast Asia, and highlights how results from smaller multilocus datasets can be useful in developing and testing biogeographic hypotheses alongside genomic datasets. 
    more » « less
  2. null (Ed.)
    One of the most urgent contemporary tasks for taxonomists and evolutionary biologists is to estimate the number of species on earth. Recording alpha diversity is crucial for protecting biodiversity, especially in areas of elevated species richness, which coincide geographically with increased anthropogenic environmental pressures - the world’s so-called biodiversity hotspots. Although the distribution of Puddle frogs of the genus Occidozyga in South and Southeast Asia includes five biodiversity hotspots, the available data on phylogeny, species diversity, and biogeography are surprisingly patchy. Samples analyzed in this study were collected throughout Southeast Asia, with a primary focus on Sundaland and the Philippines. A mitochondrial gene region comprising ~ 2000 bp of 12S and 16S rRNA with intervening tRNA Valine and three nuclear loci (BDNF, NTF3, POMC) were analyzed to obtain a robust, time-calibrated phylogenetic hypothesis. We found a surprisingly high level of genetic diversity within Occidozyga, based on uncorrected p-distance values corroborated by species delimitation analyses. This extensive genetic diversity revealed 29 evolutionary lineages, defined by the > 5% uncorrected p-distance criterion for the 16S rRNA gene, suggesting that species diversity in this clade of phenotypically homogeneous forms probably has been underestimated. The comparison with results of other anuran groups leads to the assumption that anuran species diversity could still be substantially underestimated in Southeast Asia in general. Many genetically divergent lineages of frogs are phenotypically similar, indicating a tendency towards extensive morphological conservatism. We present a biogeographic reconstruction of the colonization of Sundaland and nearby islands which, together with our temporal framework, suggests that lineage diversification centered on the landmasses of the northern Sunda Shelf. This remarkably genetically structured group of amphibians could represent an exceptional case for future studies of geographical structure and diversification in a widespread anuran clade spanning some of the most pronounced geographical barriers on the planet (e.g., Wallace’s Line). Studies considering gene flow, morphology, ecological and bioacoustic data are needed to answer these questions and to test whether observed diversity of Puddle frog lineages warrants taxonomic recognition. 
    more » « less
  3. null (Ed.)
    Abstract The ‘Out of India’ hypothesis is often invoked to explain patterns of distribution among Southeast Asian taxa. According to this hypothesis, Southeast Asian taxa originated in Gondwana, diverged from their Gondwanan relatives when the Indian subcontinent rifted from Gondwana in the Late Jurassic, and colonized Southeast Asia when it collided with Eurasia in the early Cenozoic. A growing body of evidence suggests these events were far more complex than previously understood, however. The first quantitative reconstruction of the biogeography of Asian forest scorpions (Scorpionidae Latreille, 1802: Heterometrinae Simon, 1879) is presented here. Divergence time estimation, ancestral range estimation, and diversification analyses are used to determine the origins, dispersal and diversification patterns of these scorpions, providing a timeline for their biogeographical history that can be summarized into four major events. (1) Heterometrinae diverged from other Scorpionidae on the African continent after the Indian subcontinent became separated in the Cretaceous. (2) Environmental stresses during the Cretaceous–Tertiary (KT) mass extinction caused range contraction, restricting one clade of Heterometrinae to refugia in southern India (the Western Ghats) and Sri Lanka (the Central Highlands). (3) Heterometrinae dispersed to Southeast Asia three times during India’s collision with Eurasia, the first dispersal event occurring as the Indian subcontinent brushed up against the western side of Sumatra, and the other two events occurring as India moved closer to Eurasia. (4) Indian Heterometrinae, confined to southern India and Sri Lanka during the KT mass extinction, recolonized the Deccan Plateau and northern India, diversifying into new, more arid habitats after environmental conditions stabilized. These hypotheses, which are congruent with the geological literature and biogeographical analyses of other taxa from South and Southeast Asia, contribute to an improved understanding of the dispersal and diversification patterns of taxa in this biodiverse and geologically complex region. 
    more » « less
  4. Abstract New Guinea is the largest tropical island in the world and hosts immense endemic biodiversity. However, our understanding of how the gradual emergence of the terrestrial ecosystems of the island over the last 40 Myr has generated this biological richness is hampered by poorly documented species diversity and distributions. Here, we address both these issues through an integrative taxonomy and biogeographical approach using Hylophorbus, a New Guinea-endemic genus of frogs with 12 recognized species. We delimited candidate species by integrating mitochondrial DNA, nuclear DNA, and bioacoustics, then investigated their evolutionary history. Our results suggest that the current taxonomy of the genus misses true species diversity by ≥3.5-fold. Nevertheless, most candidate species (27) remain unconfirmed because of missing data, whereas five were identified unambiguously as undescribed (we describe three of these formally). Time-calibrated phylogenetic analyses suggest that Hylophorbus diversification began ~9 Mya in the northern or eastern portion of New Guinea. It would appear that lineages dispersed to new terrestrial habitats in the west, notably uplifted by the central range orogeny, until eventually reaching the Bird’s Head during the Mio-Pliocene (7–5 Mya). Conversely, a past barrier appears to have prevented north–south dispersal. These data suggest that new habitat availability has primarily driven the diversification of Hylophorbus. 
    more » « less
  5. Homalopsids (Old World Mud Snakes) include 59 semiaquatic species in Asia and Australasia that display an array of morphological adaptations, behaviors, and microhabitat preferences. These attributes make homalopsids an ideal model system for broader questions in evolutionary biology, but the diversity of this understudied group of snakes is still being described. Recognized species diversity in rice paddy snakes (Hypsiscopus) has recently doubled after nearly 200 years of taxonomic stability. However, the evolutionary distinctiveness of some populations remains in question. In this study, we compare mainland Southeast Asian populations of Hypsiscopus east and west of the Red River Basin in Vietnam, a known biogeographic barrier in Asia, using an iterative approach with molecular phylogenetic reconstruction, machine-learning morphological quantitative statistics, and ecological niche modeling. Our analyses show that populations west of the Red River Basin represent an independent evolutionary lineage that is distinct in genetics, morphospace, and habitat suitability, and so warrants species recognition. The holotype of H. wettsteini, a species originally described in error from Costa Rica, grouped morphometrically with the population at the Red River Basin and eastward, and those west of the Red River Basin are referred to the recently described H. murphyi. The two species may have diversified due to a variety of geological and environmental factors, and their recognition exemplifies the importance of multifaceted approaches in taxonomy for downstream biogeographic studies on speciation scenarios.  
    more » « less