skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on April 1, 2026

Title: Hierarchy of Chaotic Dynamics in Random Modular Networks
We introduce a model of randomly connected neural populations and study its dynamics by means of the dynamical mean-field theory and simulations. Our analysis uncovers a rich phase diagram, featuring high- and low-dimensional chaotic phases, separated by a crossover region characterized by low values of the maximal Lyapunov exponent and participation ratio dimension, but with high values of the Lyapunov dimension that change significantly across the region. Counterintuitively, chaos can be attenuated by either adding noise to strongly modular connectivity or by introducing modularity into random connectivity. Extending the model to include a multilevel, hierarchical connectivity reveals that a loose balance between activities across levels drives the system towards the edge of chaos.  more » « less
Award ID(s):
2223725
PAR ID:
10632889
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Physical Review Journals
Date Published:
Journal Name:
Physical Review Letters
Volume:
134
Issue:
14
ISSN:
0031-9007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Scaling regions—intervals on a graph where the dependent variable depends linearly on the independent variable—abound in dynamical systems, notably in calculations of invariants like the correlation dimension or a Lyapunov exponent. In these applications, scaling regions are generally selected by hand, a process that is subjective and often challenging due to noise, algorithmic effects, and confirmation bias. In this paper, we propose an automated technique for extracting and characterizing such regions. Starting with a two-dimensional plot—e.g., the values of the correlation integral, calculated using the Grassberger–Procaccia algorithm over a range of scales—we create an ensemble of intervals by considering all possible combinations of end points, generating a distribution of slopes from least squares fits weighted by the length of the fitting line and the inverse square of the fit error. The mode of this distribution gives an estimate of the slope of the scaling region (if it exists). The end points of the intervals that correspond to the mode provide an estimate for the extent of that region. When there is no scaling region, the distributions will be wide and the resulting error estimates for the slope will be large. We demonstrate this method for computations of dimension and Lyapunov exponent for several dynamical systems and show that it can be useful in selecting values for the parameters in time-delay reconstructions. 
    more » « less
  2. We study the dynamics of a quantum p-spin glass model starting from initial states defined in microcanonical shells, in a classical regime. We compute different chaos estimators, such as the Lyapunov exponent and the Kolmogorov-Sinai entropy, and find a marked maximum as a function of the energy of the initial state. By studying the relaxation dynamics and the properties of the energy landscape we show that the maximal chaos emerges in correspondence with the fastest spin relaxation and the maximum complexity, thus suggesting a qualitative picture where chaos emerges as the trajectories are scattered over the exponentially many saddles of the underlying landscape. We also observe hints of ergodicity breaking at low energies, indicated by the correlation function and a maximum of the fidelity susceptibility. 
    more » « less
  3. In the context of anti-de Sitter/conformal field theory , gravitational shockwaves serve as a geometric manifestation of boundary quantum chaos. We study this connection in general diffeomorphism-invariant theories involving an arbitrary number of bosonic fields. Specifically, we demonstrate that theories containing spin-2 or higher-spin fields generally admit classical localized shockwave solutions on black hole backgrounds, whereas spin-0 and spin-1 theories do not. As in the gravitational case, these higher-spin shockwaves provide a means to compute the out-of-time-order correlator. Both the Lyapunov exponent and the butterfly velocity are found to universally agree with predictions from pole skipping. In particular, higher-spin fields lead to a Lyapunov exponent that violates the chaos bound and a butterfly velocity that may exceed the speed of light. 
    more » « less
  4. The ultimate regularity of quantum mechanics creates a tension with the assumption of classical chaos used in many of our pictures of chemical reaction dynamics. Out-of-time-order correlators (OTOCs) provide a quantum analog to the Lyapunov exponents that characterize classical chaotic motion. Maldacena, Shenker, and Stanford have suggested a fundamental quantum bound for the rate of information scrambling, which resembles a limit suggested by Herzfeld for chemical reaction rates. Here, we use OTOCs to study model reactions based on a double-well reaction coordinate coupled to anharmonic oscillators or to a continuum oscillator bath. Upon cooling, as one enters the tunneling regime where the reaction rate does not strongly depend on temperature, the quantum Lyapunov exponent can approach the scrambling bound and the effective reaction rate obtained from a population correlation function can approach the Herzfeld limit on reaction rates: Tunneling increases scrambling by expanding the state space available to the system. The coupling of a dissipative continuum bath to the reaction coordinate reduces the scrambling rate obtained from the early-time OTOC, thus making the scrambling bound harder to reach, in the same way that friction is known to lower the temperature at which thermally activated barrier crossing goes over to the low-temperature activationless tunneling regime. Thus, chemical reactions entering the tunneling regime can be information scramblers as powerful as the black holes to which the quantum Lyapunov exponent bound has usually been applied. 
    more » « less
  5. This paper investigates the origin and onset of chaos in a mathematical model of an individual neuron, arising from the intricate interaction between 3D fast and 2D slow dynamics governing its intrinsic currents. Central to the chaotic dynamics are multiple homoclinic connections and bifurcations of saddle equilibria and periodic orbits. This neural model reveals a rich array of codimension-2 bifurcations, including Shilnikov–Hopf, Belyakov, Bautin, and Bogdanov–Takens points, which play a pivotal role in organizing the complex bifurcation structure of the parameter space. We explore various routes to chaos occurring at the intersections of quiescent, tonic spiking, and bursting activity regimes within this space and provide a thorough bifurcation analysis. Despite the high dimensionality of the model, its fast–slow dynamics allow a reduction to a one-dimensional return map, accurately capturing and explaining the complex dynamics of the neural model. Our approach integrates parameter continuation analysis, newly developed symbolic techniques, and Lyapunov exponents, collectively unveiling the intricate dynamical and bifurcation structures present in the system. 
    more » « less