Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 25, 2026
-
Free, publicly-accessible full text available May 7, 2026
-
We introduce a model of randomly connected neural populations and study its dynamics by means of the dynamical mean-field theory and simulations. Our analysis uncovers a rich phase diagram, featuring high- and low-dimensional chaotic phases, separated by a crossover region characterized by low values of the maximal Lyapunov exponent and participation ratio dimension, but with high values of the Lyapunov dimension that change significantly across the region. Counterintuitively, chaos can be attenuated by either adding noise to strongly modular connectivity or by introducing modularity into random connectivity. Extending the model to include a multilevel, hierarchical connectivity reveals that a loose balance between activities across levels drives the system towards the edge of chaos.more » « lessFree, publicly-accessible full text available April 1, 2026
-
Free, publicly-accessible full text available March 19, 2026
-
Decision-making is a cognitive process involving working memory, executive function, and attention. However, the connectivity of large-scale brain networks during decision-making is not well understood. This is because gaining access to large-scale brain networks in humans is still a novel process. Here, we used SEEG (stereoelectroencephalography) to record neural activity from the default mode network (DMN), dorsal attention network (DAN), and frontoparietal network (FN) in ten humans while they performed a gambling task in the form of the card game, “War”. By observing these networks during a decision-making period, we related the activity of and connectivity between these networks. In particular, we found that gamma band activity was directly related to a participant’s ability to bet logically, deciding what betting amount would result in the highest monetary gain or lowest monetary loss throughout a session of the game. We also found connectivity between the DAN and the relation to a participant’s performance. Specifically, participants with higher connectivity between and within these networks had higher earnings. Our preliminary findings suggest that connectivity and activity between these networks are essential during decision-making.more » « less
-
Aitken et al. introduce a simple, biologically inspired model for synaptic plasticity that leads to distinct responses to novel versus familiar stimuli. Using an experimentally constrained model of a cortical circuit with plasticity at specific synapses, multiple types of complex novelty effects recently observed in experiment are simultaneously reproduced.more » « less
-
Abstract—Accurately capturing dynamic scenes with wideranging motion and light intensity is crucial for many vision applications. However, acquiring high-speed high dynamic range (HDR) video is challenging because the camera’s frame rate restricts its dynamic range. Existing methods sacrifice speed to acquire multi-exposure frames. Yet, misaligned motion in these frames can still pose complications for HDR fusion algorithms, resulting in artifacts. Instead of frame-based exposures, we sample the videos using individual pixels at varying exposures and phase offsets. Implemented on a monochrome pixel-wise programmable image sensor, our sampling pattern captures fast motion at a high dynamic range. We then transform pixel-wise outputs into an HDR video using end-to-end learned weights from deep neural networks, achieving high spatiotemporal resolution with minimized motion blurring. We demonstrate aliasing-free HDR video acquisition at 1000 FPS, resolving fast motion under low-light conditions and against bright backgrounds — both challenging conditions for conventional cameras. By combining the versatility of pixel-wise sampling patterns with the strength of deep neural networks at decoding complex scenes, our method greatly enhances the vision system’s adaptability and performance in dynamic conditions. Index Terms—High-dynamic-range video, high-speed imaging, CMOS image sensors, programmable sensors, deep learning, convolutional neural networks.more » « less
-
A biologically inspired architecture with switching units can learn to generalize across backgroundsHumans and other animals navigate different environments effortlessly, their brains rapidly and accurately generalizing across contexts. Despite recent progress in deep learning, this flexibility remains a challenge for many artificial systems. Here, we show how a bio-inspired network motif can explicitly address this issue. We do this using a dataset of MNIST digits of varying transparency, set on one of two backgrounds of different statistics that define two contexts: a pixel-wise noise or a more naturalistic background from the CIFAR-10 dataset. After learning digit classification when both contexts are shown sequentially, we find that both shallow and deep networks have sharply decreased performance when returning to the first background — an instance of the catastrophic forgetting phenomenon known from continual learning. To overcome this, we propose the bottleneck-switching network or switching network for short. This is a bio-inspired architecture analogous to a well-studied network motif in the visual cortex, with additional ‘‘switching’’ units that are activated in the presence of a new background, assuming a priori a contextual signal to turn these units on or off. Intriguingly, only a few of these switching units are sufficient to enable the network to learn the new context without catastrophic forgetting through inhibition of redundant background features. Further, the bottleneck-switching network can generalize to novel contexts similar to contexts it has learned. Importantly, we find that — again as in the underlying biological network motif, recurrently connecting the switching units to network layers is advantageous for context generalization.more » « less
An official website of the United States government

Full Text Available