skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Robustness to Subpopulation Shift with Domain Label Noise via Regularized Annotation of Domains
Existing methods for last layer retraining that aim to optimize worst-group accuracy (WGA) rely heavily on well-annotated groups in the training data. We show, both in theory and practice, that annotation-based data augmentations using either downsampling or upweighting for WGA are susceptible to domain annotation noise. The WGA gap is exacerbated in highnoise regimes for models trained with vanilla empirical risk minimization (ERM). To this end, we introduce Regularized Annotation of Domains (RAD) to train robust last layer classifiers without needing explicit domain annotations. Our results show that RAD is competitive with other recently proposed domain annotation-free techniques. Most importantly, RAD outperforms state-of-the-art annotation-reliant methods even with only 5% noise in the training data for several publicly available datasets.  more » « less
Award ID(s):
2312666 2205080 2007688
PAR ID:
10633073
Author(s) / Creator(s):
; ; ; ; ;
Corporate Creator(s):
Editor(s):
NA
Publisher / Repository:
Journal of Machine Learning Research Inc.
Date Published:
Journal Name:
Transactions on machine learning research
ISSN:
2835-8856
Subject(s) / Keyword(s):
N/A
Format(s):
Medium: X Size: N/A Other: N/A
Size(s):
N/A
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Supervised deep learning methods have achieved state-of-the-art performance on the task of named entity recognition (NER). However, such methods suffer from high cost and low efficiency in training data annotation, leading to highly specialized NER models that cannot be easily adapted to new domains. Recently, distant supervision has been applied to replace human annotation, thanks to the fast development of domain-specific knowledge bases. However, the generated noisy labels pose significant challenges in learning effective neural models with distant supervision. We propose PATNER, a distantly supervised NER model that effectively deals with noisy distant supervision from domain-specific dictionaries. PATNER does not require human-annotated training data but only relies on unlabeled data and incomplete domain-specific dictionaries for distant supervision. It incorporates the distant labeling uncertainty into the neural model training to enhance distant supervision. We go beyond the traditional sequence labeling framework and propose a more effective fuzzy neural model using the tie-or-break tagging scheme for the NER task. Extensive experiments on three benchmark datasets in two domains demonstrate the power of PATNER. Case studies on two additional real-world datasets demonstrate that PATNER improves the distant NER performance in both entity boundary detection and entity type recognition. The results show a great promise in supporting high quality named entity recognition with domain-specific dictionaries on a wide variety of entity types. 
    more » « less
  2. Artificial intelligence (AI) techniques have displayed impressive success in many practical fields. Deep neural networks (DNNs) owe their success to the availability of massive labeled data. However, in many real-world problems, even when a large dataset is available, deep learning methods have shown less success, due to causes such as lack of large labeled dataset, presence of noise in data, or missing data. In the present work, we intend to examine the application of deep learning methods on radar data gathered from polar regions. Our goal is to track internal ice layers in radar imagery. In such data, the presence of noise is one of the main obstacles in utilizing popular deep learning methods such as transfer learning. Our experiments show that if the neural network is trained to detect contours of objects in electro-optical imagery, it can only track a low percentage of contours in radar data. Fine-tuning and further training do not provide any better results. However, we will show that selecting the right model and training the model on the radar imagery from the base, is going to yield far better results. We also discuss another possible learning approach that can save us time for data annotation. 
    more » « less
  3. Many real-world applications require automated data annotation, such as identifying tissue origins based on gene expressions and classifying images into semantic categories. Annotation classes are often numerous and subject to changes over time, and annotating examples has become the major bottleneck for supervised learning methods. In science and other high-value domains, large repositories of data samples are often available, together with two sources of organic supervision: a lexicon for the annotation classes, and text descriptions that accompany some data samples. Distant supervision has emerged as a promising paradigm for exploiting such indirect supervision by automatically annotating examples where the text description contains a class mention in the lexicon. However, due to linguistic variations and ambiguities, such training data is inherently noisy, which limits the accuracy in this approach. In this paper, we introduce an auxiliary natural language processing system for the text modality, and incorporate co-training to reduce noise and augment signal in distant supervision. Without using any manually labeled data, our EZLearn system learned to accurately annotate data samples in functional genomics and scientific figure comprehension, substantially outperforming state-of-the-art supervised methods trained on tens of thousands of annotated examples. 
    more » « less
  4. Scientific literature analysis needs fine-grained named entity recognition (NER) to provide a wide range of information for scientific discovery. For example, chemistry research needs to study dozens to hundreds of distinct, fine-grained entity types, making consistent and accurate annotation difficult even for crowds of domain experts. On the other hand, domain-specific ontologies and knowledge bases (KBs) can be easily accessed, constructed, or integrated, which makes distant supervision realistic for fine-grained chemistry NER. In distant supervision, training labels are generated by matching mentions in a document with the concepts in the knowledge bases (KBs). However, this kind of KB-matching suffers from two major challenges: incomplete annotation and noisy annotation. We propose ChemNER, an ontology-guided, distantly-supervised method for fine-grained chemistry NER to tackle these challenges. It leverages the chemistry type ontology structure to generate distant labels with novel methods of flexible KB-matching and ontology-guided multi-type disambiguation. It significantly improves the distant label generation for the subsequent sequence labeling model training. We also provide an expert-labeled, chemistry NER dataset with 62 fine-grained chemistry types (e.g., chemical compounds and chemical reactions). Experimental results show that ChemNER is highly effective, outperforming substantially the state-of-the-art NER methods (with .25 absolute F1 score improvement). 
    more » « less
  5. Recent progress in data-driven vision and language-based tasks demands developing training datasets enriched with multiple modalities representing human intelligence. The link between text and image data is one of the crucial modalities for developing AI models. The development process of such datasets in the video domain requires much effort from researchers and annotators (experts and non-experts). Researchers re-design annotation tools to extract knowledge from annotators to answer new research questions. The whole process repeats for each new question which is timeconsuming. However, since the last decade, there has been little change in how the researchers and annotators interact with the annotation process. We revisit the annotation workflow and propose a concept of an adaptable and scalable annotation tool. The concept emphasizes its users’ interactivity to make annotation process design seamless and efficient. Researchers can conveniently add newer modalities to or augment the extant datasets using the tool. The annotators can efficiently link free-form text to image objects. For conducting human-subject experiments on any scale, the tool supports the data collection for attaining group ground truth. We have conducted a case study using a prototype tool between two groups with the participation of 74 non-expert people. We find that the interactive linking of free-form text to image objects feels intuitive and evokes a thought process resulting in a high-quality annotation. The new design shows ≈ 35% improvement in the data annotation quality. On UX evaluation, we receive above-average positive feedback from 25 people regarding convenience, UI assistance, usability, and satisfaction. 
    more » « less