skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on June 25, 2026

Title: Replicating associative learning of rodents with a neuromorphic robot in an open-field arena
This study emulates associative learning in rodents by using a neuromorphic robot navigating an open-field arena. The goal is to investigate how biologically inspired neural models can reproduce animal-like learning behaviors in real-world robotic systems. We constructed a neuromorphic robot by deploying computational models of spatial and sensory neurons onto a mobile platform. Different coding schemes—rate coding for vibration signals and population coding for visual signals—were implemented. The associative learning model employs 19 spiking neurons and follows Hebbian plasticity principles to associate visual cues with favorable or unfavorable locations. Our robot successfully replicated classical rodent associative learning behavior by memorizing causal relationships between environmental cues and spatial outcomes. The robot’s self-learning capability emerged from repeated exposure and synaptic weight adaptation, without the need for labeled training data. Experiments confirmed functional learning behavior across multiple trials. This work provides a novel embodied platform for memory and learning research beyond traditional animal models. By embedding biologically inspired learning mechanisms into a real robot, we demonstrate how spatial memory can be formed and expressed through sensorimotor interactions. The model’s compact structure (19 neurons) illustrates a minimal yet functional learning network, and the study outlines principles for synaptic weight and threshold design, guiding future development of more complex neuromorphic systems.  more » « less
Award ID(s):
2245712
PAR ID:
10633081
Author(s) / Creator(s):
; ;
Editor(s):
Machado, Pedro
Publisher / Repository:
Frontier in Neuroscience
Date Published:
Journal Name:
Frontiers in Neuroscience
Volume:
19
ISSN:
1662-453X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Associative memory is a widespread self-learning method in biological livings, which enables the nervous system to remember the relationship between two concurrent events. The significance of rebuilding associative memory at a behavior level is not only to reveal a way of designing a brain-like self-learning neuromorphic system but also to explore a method of comprehending the learning mechanism of a nervous system. In this paper, an associative memory learning at a behavior level is realized that successfully associates concurrent visual and auditory information together (pronunciation and image of digits). The task is achieved by associating the large-scale artificial neural networks (ANNs) together instead of relating multiple analog signals. In this way, the information carried and preprocessed by these ANNs can be associated. A neuron has been designed, named signal intensity encoding neurons (SIENs), to encode the output data of the ANNs into the magnitude and frequency of the analog spiking signals. Then, the spiking signals are correlated together with an associative neural network, implemented with a three-dimensional (3-D) memristor array. Furthermore, the selector devices in the traditional memristor cells limiting the design area have been avoided by our novel memristor weight updating scheme. With the novel SIENs, the 3-D memristive synapse, and the proposed memristor weight updating scheme, the simulation results demonstrate that our proposed associative memory learning method and the corresponding circuit implementations successfully associate the pronunciation and image of digits together, which mimics a human-like associative memory learning behavior. 
    more » « less
  2. Fear conditioning is a behavioral paradigm of learning to predict aversive events. It is a form of associative learning that memorizes an undesirable stimulus (e.g., an electrical shock) and a neutral stimulus (e.g., a tone), resulting in a fear response (such as running away) to the originally neutral stimulus. The association of concurrent events is implemented by strengthening the synaptic connection between the neurons. In this paper, with an analogous methodology, we reproduce the classic fear conditioning experiment of rats using mobile robots and a neuromorphic system. In our design, the acceleration from a vibration platform substitutes the undesirable stimulus in rats. Meanwhile, the brightness of light (dark vs. light) is used for a neutral stimulus, which is analogous to the neutral sound in fear conditioning experiments in rats. The brightness of the light is processed with sparse coding in the Intel Loihi chip. The simulation and experimental results demonstrate that our neuromorphic robot successfully, for the first time, reproduces the fear conditioning experiment of rats with a mobile robot. The work exhibits a potential online learning paradigm with no labeled data required. The mobile robot directly memorizes the events by interacting with its surroundings, essentially different from data-driven methods. 
    more » « less
  3. Deep learning accomplishes remarkable success through training with massively labeled datasets. However, the high demands on the datasets impede the feasibility of deep learning in edge computing scenarios and suffer the data scarcity issue. Rather than relying on labeled data, animals learn by interacting with their surroundings and memorizing the relationship between concurrent events. This learning paradigm is referred to as associative memory. The successful implementation of associative memory potentially achieves self-learning schemes analogous to animals to resolve the challenges of deep learning. The state-of-the-art implementations of associative memory are limited to small-scale and offline paradigms. Thus, in this work, we implement associative memory learning with an Unmanned Ground Vehicle (UGV) and neuromorphic chips (Intel Loihi) for an online learning scenario. Our system reproduces the classic associative memory in rats. In specific, our system successfully reproduces the fear conditioning with no pretraining procedure and labeled datasets. In our experiments, the UGV serves as a substitute for the rats. Our UGV autonomously memorizes the cause-and-effect of the light stimulus and vibration stimulus, then exhibits a movement response. During associative memory learning, the synaptic weights are updated by Hebbian learning. The Intel Loihi chip is integrated with our online learning system for processing visual signals. Its average power usages for computing logic and memory are 30 mW and 29 mW, respectively. 
    more » « less
  4. Information coding by precise timing of spikes can be faster and more energy efficient than traditional rate coding. However, spike-timing codes are often brittle, which has limited their use in theoretical neuroscience and computing applications. Here, we propose a type of attractor neural network in complex state space and show how it can be leveraged to construct spiking neural networks with robust computational properties through a phase-to-timing mapping. Building on Hebbian neural associative memories, like Hopfield networks, we first propose threshold phasor associative memory (TPAM) networks. Complex phasor patterns whose components can assume continuous-valued phase angles and binary magnitudes can be stored and retrieved as stable fixed points in the network dynamics. TPAM achieves high memory capacity when storing sparse phasor patterns, and we derive the energy function that governs its fixed-point attractor dynamics. Second, we construct 2 spiking neural networks to approximate the complex algebraic computations in TPAM, a reductionist model with resonate-and-fire neurons and a biologically plausible network of integrate-and-fire neurons with synaptic delays and recurrently connected inhibitory interneurons. The fixed points of TPAM correspond to stable periodic states of precisely timed spiking activity that are robust to perturbation. The link established between rhythmic firing patterns and complex attractor dynamics has implications for the interpretation of spike patterns seen in neuroscience and can serve as a framework for computation in emerging neuromorphic devices. 
    more » « less
  5. Resistive random-access memories are promising analog synaptic devices for efficient bio-inspired neuromorphic computing arrays. Here we first describe working principles for phase-change random-access memory, oxide random-access memory, and conductive-bridging random-access memory for artificial synapses. These devices could allow for dense and efficient storage of analog synapse connections between CMOS neuron circuits. We also discuss challenges and opportunities for analog synaptic devices toward the goal of realizing passive neuromorphic computing arrays. Finally, we focus on reducing spatial and temporal variations, which is critical to experimentally realize powerful and efficient neuromorphic computing systems. 
    more » « less