skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 22, 2026

Title: Electrochemistry as a Tool for Redox‐Based Bio‐Information Processing
Abstract Redox, a native modality in biology involving the flow of electrons, energy, and information, is used for energy‐harvesting, biosynthesis, immune‐defense, and signaling. Because electrons (in contrast to protons) are not soluble in the medium, electron‐flow through the redox modality occurs through redox reactions that are sometimes organized into pathways and networks (e.g., redox interactomes). Redox is also accessible to electrochemistry, which enables electrodes to receive and transmit electrons to exchange energy and information with biology. In this Perspective, efforts to develop electrochemistry as a tool for redox‐based bio‐information processing: to interconvert redox‐based molecular attributes into interpretable electronic signals, are described. Using a series of Case Studies, how the information‐content of the measurements can be enriched using: diffusible mediators; tuned electrical input sequences; and cross‐modal measurements (e.g., electrical plus spectral), is shown. Also, theory‐guided feature engineering approaches to compress the information in the electronic signals into quantitative metrics (i.e., features) that can serve as correlating variables for pattern recognition by data‐driven analysis are described. Finally, how redox provides a modality for electrogenetic actuation is illustrated. It is suggested that electrochemistry's capabilities to provide real‐time, low‐cost, and high‐content data in an electronic format allow the feedback‐control needed for autonomous learning and deployable sensing/actuation.  more » « less
Award ID(s):
2227598
PAR ID:
10633157
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Advanced Science
ISSN:
2198-3844
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Reduction–oxidation (redox) reactions provide a distinct modality for biological communication that is fundamentally different from the more‐familiar ion‐based electrical modality. Biology uses these two modalities for communication through different systems (immune versus nervous), and uses different mechanisms to control the flow of the charge carriers: the flow of soluble ions is controlled using structural barriers (i.e., membranes) and gates (e.g., membrane‐spanning protein channels), while the flow of insoluble electrons is controlled using redox‐reaction networks. Here, a simple electrochemical approach to pattern catechols onto a flexible polysaccharide hydrogel is reported and it is demonstrated that the patterned catechol regions serve as nodes for the mediated flow of electrons through redox reactions. Electron flow through this node involves the switching of binary redox states (oxidized and reduced) and this node's redox state can be detected (i.e., “read”) by passively observing its optical absorbance, or actively switching its redox‐state electrochemically. Further, this catechol node can be switched through biological mechanisms, and this enables the fabricated catechol node to be embedded within biochemical redox reaction networks to facilitate the spanning of bio‐electronic communication. Thus, it is envisioned that catechols can emerge as a molecular equivalent to a transistor for miniaturize‐able, deployable and sustainable redox‐linked bioelectronics. 
    more » « less
  2. Catechol-based materials possess diverse properties that are especially well-suitable for redox-based bioelectronics. Previous top-down, systems-level property measurements have shown that catechol-polysaccharide films ( e.g. , catechol-chitosan films) are redox-active and allow electrons to flow through the catechol/quinone moieties via thermodynamically-constrained redox reactions. Here, we report that catechol-chitosan films are also photothermally responsive and enable near infrared (NIR) radiation to be transduced into heat. When we simultaneously stimulated catechol-chitosan films with NIR and redox inputs, times-series measurements showed that the responses were reversible and largely independent. Fundamentally, these top-down measurements suggest that the flow of energy through catechol-based materials via the redox-based molecular modality and the electromagnetic-based optical modality can be independent. Practically, this work further illustrates the potential of catecholic materials for bridging bio-device communication because it enables communication through both short-range redox modalities and long-range electromagnetic modalities. 
    more » « less
  3. Abstract Redox is emerging as an alternative modality for bio‐device communication. In contrast to the more familiar ionic electrical modality: (i) redox involves the flow of electrons through oxidation–reduction reactions; (ii) the aqueous medium is an “insulator” to this electron flow since free electrons do not normally exist in water; and (iii) redox states are intrinsically digital (oxidized and reduced). By exploiting these unique features, a catechol‐based molecular memory film is reported. This memory is fabricated by electrochemically grafting catechol to a chitosan–agarose polysaccharide network to generate a redox‐active but non‐conducting matrix. The redox state of the grafted catechol moieties serves as the 2‐state memory. It is shown that these redox states: can be repeatedly switched by diffusible mediators (electron shuttles); can be easily read electrically or optically; are stable for at least 2 h in the absence of energy; are sensitive to biologically relevant oxidizing and reducing contexts; and can be switched enzymatically. This catechol‐based molecular memory film is a simple circuit element for redox linked bioelectronics. 
    more » « less
  4. Abstract Redox provides unique opportunities for interconverting molecular/biological information into electronic signals. Here, the fabrication of a 3D‐printed multiwell device that can be interfaced into existing laboratory instruments (e.g., well‐plate readers and microscopes) to enable advanced redox‐based spectral and electrochemical capabilities is reported. In the first application, mediated probing is used as a soft sensing method for biomanufacturing: it is shown that electrochemical signal metrics can discern intact mAbs from partially reduced mAb variants (fragmentation), and that these near‐real‐time electrical measurements correlate to off‐line chemical analysis. In the second application,operandospectroelectrochemical measurements are used to characterize a redox‐active catechol‐based hydrogel film: it is shown that electron transfer into/from the film correlates to the molecular switching of the film's redox state with the film's absorbance increasing upon oxidation and the film's fluorescence increasing upon reduction. In the final example, a synthetic biofilm containing redox‐responsiveE. coliis electro‐assembled: it is shown that gene expression can be induced under reducing conditions (via reductive H2O2generation) or oxidative conditions (via oxidation of a phenolic redox‐signaling molecule). Overall, this work demonstrates that 3D printing allows the fabrication of bespoke electrochemical devices that can accelerate the understanding of redox‐based phenomena in biology and enable the detection/characterization redox activities in technology. 
    more » « less
  5. Abstract Electronic materials that allow the controlled flow of electrons in aqueous media are required for emerging applications that require biocompatibility, safety, and/or sustainability. Here, a composite hydrogel film composed of graphene and catechol is electrofabricated, and that this composite offers synergistic properties is reported. Graphene confers metal‐like conductivity and enables charge‐storage through an electrical double layer mechanism. Catechol confers redox‐activity and enables charge‐storage through a redox mechanism. Importantly, there are two functional populations of catechols: conducting‐catechols (presumably in intimate contact with graphene) allow direct electron‐transfer; and non‐conducting‐catechols (presumably physically separated from graphene) require diffusible mediators to enable electron‐transfer. Using a variety of spectroelectrochemical measurements, that the capacity of the composite for charge‐storage increases in proportion to the extent by which the catechol‐groups can undergo redox‐state switching is demonstrated. To illustrate the broad relevance of this work, how the redox‐state switching can be related to both the charge storage of energy materials and the memory of molecular electronic materials is discussed. The authors believe this work is significant because it demonstrates that: conducting and redox‐active components enable distinctly different mechanisms for charge‐storage and electron‐transfer; these components act synergistically; and mediators provide unique opportunities to extend the capabilities of electronic materials. 
    more » « less