skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on September 1, 2026

Title: Crystal structure of a seven-substitution mutant of hydroxynitrile lyase from rubber tree
The α/β-hydrolase fold superfamily includes esterases and hydroxynitrile lyases which, despite catalyzing different reactions, share a Ser–His–Asp catalytic triad. We report a 1.99 Å resolution crystal structure of HNL6V, an engineered variant of hydroxynitrile lyase fromHevea brasiliensis(HbHNL) containing seven amino-acid substitutions (T11G, E79H, C81L, H103V, N104A, G176S and K236M). The structure reveals that HNL6V maintains the characteristic α/β-hydrolase fold while exhibiting systematic shifts in backbone and catalytic atom positions. Compared with wild-typeHbHNL, the Cαpositions in HNL6V differ by a mean of 0.2 ± 0.1 Å, representing a statistically significant displacement. Importantly, the catalytic triad and oxyanion-hole atoms have moved 0.2–0.8 Å closer to their corresponding positions in SABP2, although they remain 0.3–1.1 Å from fully achieving the configuration of SABP2. The substitutions also increase local flexibility, particularly in the lid domain covering the active site. This structural characterization demonstrates that targeted amino-acid substitutions can systematically shift catalytic geometries towards those of evolutionarily related enzymes.  more » « less
Award ID(s):
2039039
PAR ID:
10633203
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
International Union of Crystallography (co-published with Wiley)
Date Published:
Journal Name:
Acta Crystallographica Section F Structural Biology Communications
Volume:
81
Issue:
9
ISSN:
2053-230X
Page Range / eLocation ID:
398 to 405
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hydroxynitrile lyase fromHevea brasiliensis(HbHNL) and the esterase SABP2 fromNicotiana tabacumshare the α/β-hydrolase fold, a Ser–His–Asp catalytic triad and 44% sequence identity, yet catalyze different reactions. Prior studies showed that three active-site substitutions inHbHNL conferred weak esterase activity. To investigate how regions beyond the active site influence catalytic efficiency and active-site geometry, we engineeredHbHNL variants with increasing numbers of substitutions to match SABP2. Variant HNL16 has all amino acids within 6.5 Å of the active site identical to SABP2, HNL40 those within 10 Å and HNL71 those within 14 Å. HNL16 exhibited poor esterase activity, whereas both HNL40 and HNL71 showed efficient esterase catalysis, demonstrating that residues beyond the immediate active site are critical for functional conversion. X-ray structures of HNL40 and HNL71 reveal a progressive shift in backbone positions toward those of SABP2, with r.m.s.d. values of 0.51 Å (HNL40) and 0.41 Å (HNL71) over the Cαatoms, and even smaller r.m.s.d.s within the active-site region. Both HNL40 and HNL71 show a restored oxyanion hole and an additional tunnel connecting the active site to the protein surface. This work demonstrates the essential role of distant, indirectly acting residues to catalysis in α/β-hydrolase enzymes. 
    more » « less
  2. Abstract As the epidemic of single‐use plastic worsens, it has become critical to identify fully renewable plastics such as those that can be degraded using enzymes. Here we describe the structure and biochemistry of an alkaline poly[(R)‐3‐hydroxybutyric acid] (PHB) depolymerase from the soil thermophileLihuaxuella thermophila. Like other PHB depolymerases or PHBases, theLihuaxuellaenzyme is active against several different polyhydroxyalkanoates, including homo‐ and heteropolymers, butL. thermophilaPHB depolymerase (LtPHBase) is unique in that it also hydrolyzes polylactic acid and polycaprolactone.LtPHBase exhibits optimal activity at 70°C, and retains 88% of activity upon incubation at 65°C for 3 days. The 1.2 Å resolution crystal structure reveals an α/β‐hydrolase fold typical of PHBases, but with a shallow active site containing the catalytic Ser‐His‐Asp‐triad that appears poised for broad substrate specificity.LtPHBase holds promise for the depolymerization of PHB and related bioplastics at high temperature, as would be required in bioindustrial operations like recycling or landfill management. 
    more » « less
  3. Brine shrimp (Artemia) are the only animals to thrive at sodium concentrations above 4 M. Salt excretion is powered by the Na+,K+-ATPase (NKA), a heterodimeric (αβ) pump that usually exports 3Na+in exchange for 2 K+per hydrolyzed ATP.Artemiaexpress several NKA catalytic α-subunit subtypes. High-salinity adaptation increases abundance of α2KK, an isoform that contains two lysines (Lys308 and Lys758 in transmembrane segments TM4 and TM5, respectively) at positions where canonical NKAs have asparagines (Xenopusα1’s Asn333 and Asn785). Using de novo transcriptome assembly and qPCR, we found thatArtemiaexpress two salinity-independent canonical α subunits (α1NNand α3NN), as well as two β variants, in addition to the salinity-controlled α2KK. These β subunits permitted heterologous expression of the α2KKpump and determination of its CryoEM structure in a closed, ion-free conformation, showing Lys758 residing within the ion-binding cavity. We used electrophysiology to characterize the function of α2KKpumps and compared it to that ofXenopusα1 (and its α2KK-mimicking single- and double-lysine substitutions). The double substitution N333K/N785K confers α2KK-like characteristics toXenopusα1, and mutant cycle analysis reveals energetic coupling between these two residues, illustrating how α2KK’s Lys308 helps to maintain high affinity for external K+when Lys758 occupies an ion-binding site. By measuring uptake under voltage clamp of the K+-congener86Rb+, we prove that double-lysine-substituted pumps transport 2Na+and 1 K+per catalytic cycle. Our results show how the two lysines contribute to generate a pump with reduced stoichiometry allowingArtemiato maintain steeper Na+gradients in hypersaline environments. 
    more » « less
  4. Kinetoplastid pathogens includingTrypanosoma brucei,T. cruzi, andLeishmaniaspecies, are early diverged, eukaryotic, unicellular parasites. Functional understanding of many proteins from these pathogens has been hampered by limited sequence homology to proteins from other model organisms. Here we describe the development of a high-throughput deep mutational scanning approach inT. bruceithat facilitates rapid and unbiased assessment of the impacts of many possible amino acid substitutions within a protein on cell fitness, as measured by relative cell growth. The approach leverages several molecular technologies: cells with conditional expression of a wild-type gene of interest and constitutive expression of a library of mutant variants, degron-controlled stabilization of I-SceI meganuclease to mediate highly efficient transfection of a mutant allele library, and a high-throughput sequencing readout for cell growth upon conditional knockdown of wild-type gene expression and exclusive expression of mutant variants. Using this method, we queried the effects of amino acid substitutions in the apparently non-catalytic RNase III-like domain of KREPB4 (B4), which is an essential component of the RNA Editing Catalytic Complexes (RECCs) that carry out mitochondrial RNA editing inT. brucei. We measured the impacts of thousands of B4 variants on bloodstream form cell growth and validated the most deleterious variants containing single amino acid substitutions. Crucially, there was no correlation between phenotypes and amino acid conservation, demonstrating the greater power of this method over traditional sequence homology searching to identify functional residues. The bloodstream form cell growth phenotypes were combined with structural modeling, RECC protein proximity data, and analysis of selected substitutions in procyclic formT. brucei. These analyses revealed that the B4 RNaseIII-like domain is essential for maintenance of RECC integrity and RECC protein abundances and is also involved in changes in RECCs that occur between bloodstream and procyclic form life cycle stages. 
    more » « less
  5. The structure of Ni(3-amino-4,4′-bipyridine)[Ni(CN)4] (or known as Ni-BpyNH2) in powder form was determined using synchrotron X-ray diffraction and refined using the Rietveld refinement technique (R= 8.8%). The orthorhombic (Cmca) cell parameters were determined to bea= 14.7218(3) Å,b= 22.6615(3) Å,c= 12.3833(3) Å,V= 4131.29(9) Å3, andZ= 8. Ni-BpyNH2forms a 3-D network, with a 2-D Ni(CN)4net connecting to each other via the BpyNH2ligands. There are two independent Ni sites on the net. The 2-D nets are connected to each other via the bonding of the pyridine “N” atom to Ni2. The Ni2 site is of six-fold coordination to N with relatively long Ni2–N distances (average of 2.118 Å) as compared to the four-fold coordinated Ni1–C distances (average of 1.850 Å). The Ni(CN)4net is arranged in a wave-like fashion. The functional group, –NH2, is disordered and was found to be in them-position relative to the N atom of the pyridine ring. Instead of having a unique position, N has ¼ site occupancy in each of the fourm-positions. The powder reference diffraction pattern for Ni-BpyNH2was prepared and submitted to the Powder Diffraction File (PDF) at the International Centre of Diffraction Data (ICDD). 
    more » « less