skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Na pump with reduced stoichiometry is up-regulated by brine shrimp in extreme salinities
Brine shrimp (Artemia) are the only animals to thrive at sodium concentrations above 4 M. Salt excretion is powered by the Na+,K+-ATPase (NKA), a heterodimeric (αβ) pump that usually exports 3Na+in exchange for 2 K+per hydrolyzed ATP.Artemiaexpress several NKA catalytic α-subunit subtypes. High-salinity adaptation increases abundance of α2KK, an isoform that contains two lysines (Lys308 and Lys758 in transmembrane segments TM4 and TM5, respectively) at positions where canonical NKAs have asparagines (Xenopusα1’s Asn333 and Asn785). Using de novo transcriptome assembly and qPCR, we found thatArtemiaexpress two salinity-independent canonical α subunits (α1NNand α3NN), as well as two β variants, in addition to the salinity-controlled α2KK. These β subunits permitted heterologous expression of the α2KKpump and determination of its CryoEM structure in a closed, ion-free conformation, showing Lys758 residing within the ion-binding cavity. We used electrophysiology to characterize the function of α2KKpumps and compared it to that ofXenopusα1 (and its α2KK-mimicking single- and double-lysine substitutions). The double substitution N333K/N785K confers α2KK-like characteristics toXenopusα1, and mutant cycle analysis reveals energetic coupling between these two residues, illustrating how α2KK’s Lys308 helps to maintain high affinity for external K+when Lys758 occupies an ion-binding site. By measuring uptake under voltage clamp of the K+-congener86Rb+, we prove that double-lysine-substituted pumps transport 2Na+and 1 K+per catalytic cycle. Our results show how the two lysines contribute to generate a pump with reduced stoichiometry allowingArtemiato maintain steeper Na+gradients in hypersaline environments.  more » « less
Award ID(s):
2003251 2309048
PAR ID:
10499698
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
National Academy of Science
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
120
Issue:
52
ISSN:
0027-8424
Page Range / eLocation ID:
e2313999120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The essential transmembrane Na+ and K+ gradients in animal cells are established by the Na+/K+ pump, a P-type ATPase that exports three Na+ and imports two K+ per ATP hydrolyzed. The mechanism by which the Na+/K+ pump distinguishes between Na+ and K+ at the two membrane sides is poorly understood. Crystal structures identify two sites (sites I and II) that bind Na+ or K+ and a third (site III) specific for Na+. The side chain of a conserved tyrosine at site III of the catalytic α-subunit (Xenopus-α1 Y780) has been proposed to contribute to Na+ binding by cation–π interaction. We substituted Y780 with natural and unnatural amino acids, expressed the mutants in Xenopus oocytes and COS-1 cells, and used electrophysiology and biochemistry to evaluate their function. Substitutions disrupting H-bonds impaired Na+ interaction, while Y780Q strengthened it, likely by H-bond formation. Utilizing the non-sense suppression method previously used to incorporate unnatural derivatives in ion channels, we were able to analyze Na+/K+ pumps with fluorinated tyrosine or phenylalanine derivatives inserted at position 780 to diminish cation–π interaction strength. In line with the results of the analysis of mutants with natural amino acid substitutions, the results with the fluorinated derivatives indicate that Na+–π interaction with the phenol ring at position 780 contributes minimally, if at all, to the binding of Na+. All Y780 substitutions decreased K+ apparent affinity, highlighting that a state-dependent H-bond network is essential for the selectivity switch at sites I and II when the pump changes conformational state. 
    more » « less
  2. Abstract In marine habitats, Atlantic salmon (Salmo salar) imbibe seawater (SW) to replace body water that is passively lost to the ambient environment. By desalinating consumed SW, the esophagus enables solute‐linked water absorption across the intestinal epithelium. The processes underlying esophageal desalination in salmon and their hormonal regulation during smoltification and following SW exposure are unresolved. To address this, we considered whether two Na+/H+exchangers (Nhe2 and −3) expressed in the esophagus contribute to the uptake of Na+from lumenal SW. There were no seasonal changes in esophagealnhe2or−3expression during smoltification; however,nhe3increased following 48 h of SW exposure in May. Esophagealnhe2, −3, andgrowth hormone receptor b1were elevated in smolts acclimated to SW for 2.5 weeks. Treatment with cortisol stimulated branchial Na+/K+‐ATPase (Nka) activity, andNa+/K+/2Clcotransporter 1(nkcc1),cystic fibrosis transmembrane regulator 1 (cftr1), andnka‐α1bexpression. Esophagealnhe2, but notnhe3expression, was stimulated by cortisol. In anterior intestine, cortisol stimulatednkcc2, cftr2, andnka‐α1b. Our findings indicate that salinity stimulates esophagealnhe2and−3, and that cortisol coordinates the expression of esophageal, intestinal, and branchial solute transporters to support the SW adaptability of Atlantic salmon. 
    more » « less
  3. Abstract BackgroundCharcot–Marie–Tooth disease (CMT) is a genetically and clinically heterogeneous group of inherited neuropathies. Monoallelic pathogenic variants inATP1A1were associated with axonal and intermediate CMT.ATP1A1encodes for the catalytic α1 subunit of the Na+/ K+ATPase. Besides neuropathy, other associated phenotypes are spastic paraplegia, intellectual disability, and renal hypomagnesemia. We hereby report the first demyelinating CMT case due to a novelATP1A1variant. MethodsWhole-exome sequencing on the patient’s genomic DNA and Sanger sequencing to validate and confirm the segregation of the identified p.P600RATP1A1variation were performed. To evaluate functional effects, blood-derived mRNA and protein levels ofATP1A1and the auxiliary β1 subunit encoded byATP1B1were investigated. The ouabain-survival assay was performed in transfected HEK cells to assess cell viability, and two-electrode voltage clamp studies were performed in Xenopus oocytes. ResultsThe variant was absent in the local and global control datasets, falls within a highly conserved protein position, and is in a missense-constrained region. The expression levels of ATP1A1 and ATP1B1 were significantly reduced in the patient compared to healthy controls. Electrophysiology indicated thatATP1A1p.P600Rinjected Xenopus oocytes have reduced Na+/ K+ATPase function. Moreover, HEK cells transfected with a construct encodingATP1A1p.P600Rharbouring variants that confers ouabain insensitivity displayed a significant decrease in cell viability after ouabain treatment compared to the wild type, further supporting the pathogenicity of this variant. ConclusionOur results further confirm the causative role ofATP1A1in peripheral neuropathy and broaden the mutational and phenotypic spectrum ofATP1A1-associated CMT. 
    more » « less
  4. Tight regulation of the Na/K pump is essential for cellular function because this heteromeric protein builds and maintains the electrochemical gradients for Na+ and K+ that energize electrical signaling and secondary active transport. We studied the regulation of the ubiquitous human α1β1 pump isoform by five human FXYD proteins normally located in muscle, kidney, and neurons. The function of Na/K pump α1β1 expressed in Xenopus oocytes with or without FXYD isoforms was evaluated using two-electrode voltage clamp and patch clamp. Through evaluation of the partial reactions in the absence of K+ but presence of Na+ in the external milieu, we demonstrate that each FXYD subunit alters the equilibrium between E1P(3Na) and E2P, the phosphorylated conformations with Na+ occluded and free from Na+, respectively, thereby altering the apparent affinity for Na+. This modification of Na+ interaction shapes the small effects of FXYD proteins on the apparent affinity for external K+ at physiological Na+. FXYD6 distinctively accelerated both the Na+-deocclusion and the pump-turnover rates. All FXYD isoforms altered the apparent affinity for intracellular Na+ in patches, an effect that was observed only in the presence of intracellular K+. Therefore, FXYD proteins alter the selectivity of the pump for intracellular ions, an effect that could be due to the altered equilibrium between E1 and E2, the two major pump conformations, and/or to small changes in ion affinities that are exacerbated when both ions are present. Lastly, we observed a drastic reduction of Na/K pump surface expression when it was coexpressed with FXYD1 or FXYD6, with the former being relieved by injection of PKA's catalytic subunit into the oocyte. Our results indicate that a prominent effect of FXYD1 and FXYD6, and plausibly other FXYDs, is the regulation of Na/K pump trafficking. 
    more » « less
  5. The presence of impermeant molecules within a cell can lead to an increase in cell volume through the influx of water driven by osmosis. This phenomenon is known as the Donnan (or Gibbs–Donnan) effect. Animal cells actively transport ions to counteract the Donnan effect and regulate their volume, actively pumping Na+ out and K+ into their cytosol using the Na+/K+ ATPase (NKA) pump. The pump-leak equations (PLEs) are a system of algebraic-differential equations to model the membrane potential, ion (Na+, K+, and Cl−), and water flux across the cell membrane, which provide insight into how the combination of passive ions fluxes and active transport contribute to stabilizing cell volume. Our broad objective is to provide analytical insight into the PLEs through three lines of investigation: (1) we show that the provision of impermeant extracellular molecules can stabilize the volume of a passive cell; (2) we demonstrate that the mathematical form of the NKA pump is not as important as the stoichiometry for cell stabilization; and (3) we investigate the interaction between the NKA pump and cation–chloride co-transporters (CCCs) on cell stabilization, showing that NCC can destabilize a cell while NKCC and KCC can stabilize it. We incorporate extracellular impermeant molecules, NKA pump, and CCCs into the PLEs and derive the exact formula for the steady states in terms of all the parameters. This analytical expression enables us to easily explore the effect of each of the system parameters on the existence and stability of the steady states. 
    more » « less