We study the combined effects of measurements and unitary evolution on the preparation of spin squeezing in an ensemble of atoms interacting with a single electromagnetic field mode inside a cavity. We derive simple criteria that determine the conditions at which measurement based entanglement generation overperforms unitary protocols. We include all relevant sources of decoherence and study both their effect on the optimal spin squeezing and the overall size of the measurement noise, which limits the dynamical range of quantum-enhanced phase measurements. Our conclusions are relevant for state-of-the-art atomic clocks that aim to operate below the standard quantum limit. Published by the American Physical Society2024 
                        more » 
                        « less   
                    
                            
                            Mitigating Scattering in a Quantum System Using Only an Integrating Sphere
                        
                    
    
            Strong quantum correlated sources are essential but delicate resources for quantum information science and engineering protocols. Decoherence and loss are the two main disruptive processes that lead to the loss of nonclassical behavior in quantum correlations. In quantum systems, scattering can contribute to both decoherence and loss. In this work, we present an experimental scheme capable of significantly mitigating the adverse impact of scattering in quantum systems. Our quantum system is composed of a two-mode squeezed light generated with the four-wave-mixing process in hot rubidium vapor and a scatterer is introduced to one of the two modes. An integrating sphere is then placed after the scatterer to recollect the scattered photons. We use mutual information between the two modes as the measure of quantum correlations and demonstrate a 47.5% mutual information recovery from scattering, despite an enormous photon loss of greater than 85%. Our scheme is the very first step toward recovering quantum correlations from disruptive random processes and thus has the potential to bridge the gap between proof-of-principle demonstrations and practical real-world implementations of quantum protocols. Published by the American Physical Society2024 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2013771
- PAR ID:
- 10633264
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- PRX Quantum
- Volume:
- 5
- Issue:
- 3
- ISSN:
- 2691-3399
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Large-scale quantum computers will inevitably need quantum error correction (QEC) to protect information against decoherence. Given that the overhead of such error correction is often formidable, autonomous quantum error correction (AQEC) proposals offer a promising near-term alternative. AQEC schemes work by transforming error states into excitations that can be efficiently removed through engineered dissipation. The recently proposed AQEC scheme by Li , called the Star code, can autonomously correct or suppress all single qubit error channels using two transmons as encoders with a tunable coupler and two lossy resonators as a cooling source. The Star code requires only two-photon interactions and can be realized with linear coupling elements, avoiding experimentally challenging higher-order terms needed in many other AQEC proposals, but needs carefully selected parameters to achieve quadratic improvements in logical states' lifetimes. Here, we theoretically and numerically demonstrate the optimal parameter choices in the Star code. We further discuss adapting the Star code to other planar superconducting circuits, which offers a scalable alternative to single qubits for incorporation in larger quantum computers or error correction codes. Published by the American Physical Society2024more » « less
- 
            We present a mechanism for producing a cosmologically significant relic density of one or more sterile neutrinos. This scheme invokes two steps: First, a population of “heavy” sterile neutrinos is created by scattering-induced decoherence of active neutrinos. Second, this population is transferred, via sterile neutrino self-interaction-mediated scatterings and decays, to one or more lighter mass ( to ) sterile neutrinos that are far more weakly (or not at all) mixed with active species and could constitute dark matter. Dark matter produced this way can evade current electromagnetic and structure-based bounds, but may nevertheless be probed by future observations. Published by the American Physical Society2024more » « less
- 
            We propose and analyze deterministic protocols to generate qudit photonic graph states from quantum emitters. We show that our approach can be applied to generate any qudit graph state and we exemplify it by constructing protocols to generate one- and two-dimensional qudit cluster states, absolutely maximally entangled states, and logical states of quantum error-correcting codes. Some of these protocols make use of time-delayed feedback, while others do not. The only additional resource requirement compared to the qubit case is the ability to control multilevel emitters. These results significantly broaden the range of multiphoton entangled states that can be produced deterministically from quantum emitters. Published by the American Physical Society2024more » « less
- 
            The memory burden effect is an explicit resolution to the information paradox by which an evaporating black hole acquires quantum hair, which then suppresses its rate of mass loss with respect to the semiclassical Hawking rate. We show that this has significant implications for particle dark matter that captures in neutron stars and forms black holes that go on to consume the host star. In particular, we show that constraints on the nucleon scattering cross section and mass of spin-0 and spin- dark matter would be extended by several orders of magnitude. Published by the American Physical Society2025more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    