skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on July 1, 2026

Title: Between Two Extremes: Tripsacum dactyloides Root Anatomical Responses to Drought and Waterlogging
ABSTRACT Plant roots are the critical interface between plants, soil, and microorganisms, and respond dynamically to changes in water availability. Although anatomical adaptations of roots to water stress (e.g., the formation of root cortical aerenchyma) are well documented, it remains unclear whether these responses manifest along the length of individual roots under both water deficiency and water overabundance. We investigated the anatomical responses ofTripsacum dactyloidesL. to both drought and waterlogging stress at high spatial resolution. Nodal roots were segmented into one‐centimeter sections from the tip to the base, allowing us to pinpoint regions of maximal anatomical change. Both stressors overall increased the proportion of root cortical aerenchyma, but metaxylem responses differed: waterlogging increased the proportion of the stele that was occupied by metaxylem with fewer but larger vessels. Drought significantly increased root hair formation within two centimeters of the root tip. The most pronounced anatomical changes occurred 3–7 cm from the root tip, where cortical cell density declined as aerenchyma expanded. These findings highlight spatial variation in root anatomical responses to water stress and provide a framework that can inform sampling protocols for various other data types where sampling effort is limiting (e.g., microbiome, transcriptome, proteome).  more » « less
Award ID(s):
2016351
PAR ID:
10633280
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Plant Direct
Date Published:
Journal Name:
Plant Direct
Volume:
9
Issue:
7
ISSN:
2475-4455
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Premise: Plant roots are the critical interface between plants, soil, and microorganisms, and respond dynamically to changes in water availability. Although anatomical adaptations of roots to water stress (e.g., the formation of root cortical aerenchyma) are well documented, it remains unclear whether these responses manifest along the length of individual roots under both water deficiency and water over-abundance. Methods: We investigated the anatomical responses of Tripsacum dactyloides L. to both drought and flood stress at high spatial resolution. Nodal roots were segmented into one-centimeter sections from the tip to the base, allowing us to pinpoint regions of maximal anatomical change. Results: Both stressors increased the proportion of root cortical aerenchyma, but metaxylem responses differed: flooding increased vessel area whereas drought led to smaller vessels, with both showing a lower number of vessels. Drought also significantly increased root hair formation, but only within the first two centimeters. The most pronounced anatomical changes occurred 3-7 cm from the root tip, where cortical cell density declined as aerenchyma expanded. Discussion: These findings highlight spatial variation in root anatomical responses to water stress and provide a framework integrating various other data types where sampling effort is limiting (e.g., microbiome, transcriptome, proteome). 
    more » « less
  2. Abstract Stomatal regulation is crucial for forest species performance and survival on drought‐prone sites. We investigated the regulation of root and shoot hydraulics in threePinus radiataclones exposed to drought stress and its coordination with stomatal conductance (gs) and leaf water potential (Ψleaf). All clones experienced a substantial decrease in root‐specific root hydraulic conductance (Kroot‐r) in response to the water stress, but leaf‐specific shoot hydraulic conductance (Kshoot‐l) did not change in any of the clones. The reduction inKroot‐rcaused a decrease in leaf‐specific whole‐plant hydraulic conductance (Kplant‐l). Among clones, the larger the decrease inKplant‐l, the more stomata closed in response to drought. Rewatering resulted in a quick recovery ofKroot‐randgs. Our results demonstrated that the reduction inKplant‐l, attributed to a down regulation of aquaporin activity in roots, was linked to the isohydric stomatal behaviour, resulting in a nearly constant Ψleafas water stress started. We concluded that higherKplant‐lis associated with water stress resistance by sustaining a less negative Ψleafand delaying stomatal closure. 
    more » « less
  3. Most plant roots have multiple cortex layers that make up the bulk of the organ and play key roles in physiology, such as flood tolerance and symbiosis. However, little is known about the formation of cortical layers outside of the highly reduced anatomy of Arabidopsis . Here, we used single-cell RNA sequencing to rapidly generate a cell-resolution map of the maize root, revealing an alternative configuration of the tissue formative transcription factor SHORT-ROOT (SHR) adjacent to an expanded cortex. We show that maize SHR protein is hypermobile, moving at least eight cell layers into the cortex. Higher-order SHR mutants in both maize and Setaria have reduced numbers of cortical layers, showing that the SHR pathway controls expansion of cortical tissue to elaborate anatomical complexity. 
    more » « less
  4. SUMMARY The conservation of GOLVEN (GLV)/ROOT MERISTEM GROWTH FACTOR (RGF) peptide encoding genes across plant genomes capable of forming roots or root‐like structures underscores their potential significance in the terrestrial adaptation of plants. This study investigates the function and role of GOLVEN peptide‐coding genes inMedicago truncatula. Five out of fifteen GLV/RGF genes were notably upregulated during nodule organogenesis and were differentially responsive to nitrogen deficiency and auxin treatment. Specifically, the expression ofMtGLV9andMtGLV10at nodule initiation sites was contingent upon the NODULE INCEPTION transcription factor. Overexpression of these five nodule‐induced GLV genes in hairy roots ofM. truncatulaand application of their synthetic peptide analogues led to a decrease in nodule count by 25–50%. Uniquely, the GOLVEN10 peptide altered the positioning of the first formed lateral root and nodule on the primary root axis, an observation we term ‘noduletaxis’; this decreased the length of the lateral organ formation zone on roots. Histological section of roots treated with synthetic GOLVEN10 peptide revealed an increased cell number within the root cortical cell layers without a corresponding increase in cell length, leading to an elongation of the root likely introducing a spatiotemporal delay in organ formation. At the transcription level, the GOLVEN10 peptide suppressed expression of microtubule‐related genes and exerted its effects by changing expression of a large subset of Auxin responsive genes. These findings advance our understanding of the molecular mechanisms by which GOLVEN peptides modulate root morphology, nodule ontogeny, and interactions with key transcriptional pathways. 
    more » « less
  5. Summary Like metazoans, plants use small regulatoryRNAs (sRNAs) to direct gene expression. Several classes ofsRNAs, which are distinguished by their origin and biogenesis, exist in plants. Among them, microRNAs (miRNAs) andtrans‐acting small interferingRNAs (ta‐siRNAs) mainly inhibit gene expression at post‐transcriptional levels. In the past decades, plant miRNAs and ta‐siRNAs have been shown to be essential for numerous developmental processes, including growth and development of shoots, leaves, flowers, roots and seeds, among others. In addition, miRNAs and ta‐siRNAs are also involved in the plant responses to abiotic and biotic stresses, such as drought, temperature, salinity, nutrient deprivation, bacteria, virus and others. This review summarizes the roles of miRNAs and ta‐siRNAs in plant physiology and development. 
    more » « less