skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 25, 2026

Title: Stokes flow of an evolving fluid film with arbitrary shape and topology
The dynamics of evolving fluid films in the viscous Stokes limit is relevant to various applications, such as the modelling of lipid bilayers in cells. While the governing equations were formulated by Scriven (1960), solving for the flow of a deformable viscous surface with arbitrary shape and topology has remained a challenge. In this study, we present a straightforward discrete model based on variational principles to address this long-standing problem. We replace the classical equations, which are expressed with tensor calculus in local coordinates, with a simple coordinate-free, differential-geometric formulation. The formulation provides a fundamental understanding of the underlying mechanics and translates directly to discretization. We construct a discrete analogue of the system using Onsager's variational principle, which, in a smooth context, governs the flow of a viscous medium. In the discrete setting, instead of term-wise discretizing the coordinate-based Stokes equations, we construct a discrete Rayleighian for the system and derive the discrete Stokes equations via the variational principle. This approach results in a stable, structure-preserving variational integrator that solves the system on general manifolds.  more » « less
Award ID(s):
2153520
PAR ID:
10633692
Author(s) / Creator(s):
; ;
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
1003
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper we revive a special, less-common, variational principle in analytical mechanics (Hertz’ principle of least curvature) to develop a novel variational analogue of Euler's equations for the dynamics of an ideal fluid. The new variational formulation is fundamentally different from those formulations based on Hamilton's principle of least action. Using this new variational formulation, we generalize the century-old problem of the flow over a two-dimensional body; we developed a variational closure condition that is, unlike the Kutta condition, derived from first principles. The developed variational principle reduces to the classical Kutta–Zhukovsky condition in the special case of a sharp-edged airfoil, which challenges the accepted wisdom about the Kutta condition being a manifestation of viscous effects. Rather, we found that it represents conservation of momentum. Moreover, the developed variational principle provides, for the first time, a theoretical model for lift over smooth shapes without sharp edges where the Kutta condition is not applicable. We discuss how this fundamental divergence from current theory can explain discrepancies in computational studies and experiments with superfluids. 
    more » « less
  2. In this paper, we present a novel approach for fluid dynamic simulations by leveraging the capabilities of Physics-Informed Neural Networks (PINNs) guided by the newly unveiled Principle of Minimum Pressure Gradient (PMPG). In a PINN formulation, the physics problem is converted into a minimization problem (typically least squares). The PMPG asserts that for incompressible flows, the total magnitude of the pressure gradient over the domain must be minimum at every time instant, turning fluid mechanics into minimization problems, making it an excellent choice for PINNs formulation. Following the PMPG, the proposed PINN formulation seeks to construct a neural network for the flow field that minimizes Nature's cost function for incompressible flows in contrast to traditional PINNs that minimize the residuals of the Navier–Stokes equations. This technique eliminates the need to train a separate pressure model, thereby reducing training time and computational costs. We demonstrate the effectiveness of this approach through a case study of inviscid flow around a cylinder. The proposed approach outperforms the traditional PINNs approach in terms of training time, convergence rate, and compliance with physical metrics. While demonstrated on a simple geometry, the methodology is extensible to more complex flow fields (e.g., three-dimensional, unsteady, and viscous flows) within the incompressible realm, which is the region of applicability of the PMPG. 
    more » « less
  3. Abstract In this work, we investigate the existence and uniqueness properties of a composite structure (multilayered)–fluid interaction PDE system which arises in multi-physics problems, and particularly in biofluidic applications related to the mammalian blood transportation process. The PDE system under consideration consists of the interactive coupling of 3D Stokes flow and 3D elastic dynamics which gives rise to an additional 2D elastic equation on the boundary interface between these 3D PDE systems. By means of a nonstandard mixed variational formulation, we show that the PDE system generates a$$C_0$$ C 0 -semigroup on the associated finite energy space of data. In this work, the presence of the pressure term in the 3D Stokes equation adds a great challenge to our analysis. To overcome this difficulty, we follow a methodology which is based on the necessarily non-Leray-based elimination of the associated pressure term, via appropriate nonlocal operators. Moreover, while we express the fluid solution variable via decoupling of the Stokes equation, we construct the elastic solution variables by solving a mixed variational formulation via a Babuska–Brezzi approach. 
    more » « less
  4. We develop a mixed finite element method for the coupled problem arising in the interaction between a free fluid governed by the Stokes equations and flow in deformable porous medium modeled by the Biot system of poroelasticity. Mass conservation, balance of stress, and the Beavers–Joseph–Saffman condition are imposed on the interface. We consider a fully mixed Biot formulation based on a weakly symmetric stress-displacement-rotation elasticity system and Darcy velocity-pressure flow formulation. A velocity-pressure formulation is used for the Stokes equations. The interface conditions are incorporated through the introduction of the traces of the structure velocity and the Darcy pressure as Lagrange multipliers. Existence and uniqueness of a solution are established for the continuous weak formulation. Stability and error estimates are derived for the semi-discrete continuous-in-time mixed finite element approximation. Numerical experiments are presented to verify the theoretical results and illustrate the robustness of the method with respect to the physical parameters. 
    more » « less
  5. In this paper we construct a novel discretization of the Cahn-Hilliard equation coupled with the Navier-Stokes equations. The Cahn-Hilliard equation models the separation of a binary mixture. We construct a very simple time integration scheme for simulating the Cahn-Hilliard equation, which is based on splitting the fourth-order equation into two second-order Helmholtz equations. We combine the Cahn-Hilliard equation with the Navier-Stokes equations to simulate phase separation in a two-phase fluid flow in two dimensions. The scheme conserves mass and momentum and exhibits consistency between mass and momentum, allowing it to be used with large density ratios. We introduce a novel discretization of the surface tension force from the phase-field variable that has finite support around the transition region. The model has a parameter that allows it to transition from a smoothed continuum surface force to a fully sharp interface formulation. We show that our method achieves second-order accuracy, and we compare our method to previous work in a variety of experiments. 
    more » « less