skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Nanoscale control of LaAlO3/SrTiO3 conductance beyond the polar catastrophe
Conductive atomic force microscope (c-AFM) lithography can be utilized to create a wide range of LaAlO3/SrTiO3 (LAO/STO)-based nanoelectronic devices in a reconfigurable manner. Experiments were generally performed with intrinsically insulating LAO/STO heterostructures, with LAO thickness less than the critical value at which a polar catastrophe takes place [<4 unit cell (u.c.)]. Here, we use inductively coupled plasma reactive ion etching (ICPRIE) to fabricate c-AFM “canvases” on intrinsically conducting LAO/STO samples with ≥4 u.c. LAO. We observe that its interfacial two-dimensional electron gas (2DEG) can be pinched off and then switched back on by c-AFM lithography. Nanowires created with initially conductive LAO/STO interfaces have an order-of-magnitude longer lifetime in ambient conditions, when compared to an identically created 3.4 u.c. LAO/STO nanowire. We also demonstrate key nanoscale properties such as ballistic transport in a quasi-one-dimensional electron waveguide at a 5 u.c. LAO/STO interface. This approach frees c-AFM-written nanodevice designs from time constraints in air associated with <4 u.c. LAO/STO heterostructures.  more » « less
Award ID(s):
2225888
PAR ID:
10633748
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
138
Issue:
9
ISSN:
0021-8979
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In recent years, lanthanum aluminate/strontium titanate (LAO/STO) heterointerfaces have been used to create a growing family of nanoelectronic devices based on nanoscale control of LAO/STO metal-to-insulator transition. The properties of these devices are wide-ranging, but they are restricted by nature of the underlying thick STO substrate. Here, single-crystal freestanding membranes based on LAO/STO heterostructures were fabricated, which can be directly integrated with other materials via van der Waals stacking. The key properties of LAO/STO are preserved when LAO/STO membranes are formed. Conductive atomic force microscope lithography is shown to successfully create reversible patterns of nanoscale conducting regions, which survive to millikelvin temperatures. The ability to form reconfigurable conducting nanostructures on LAO/STO membranes opens opportunities to integrate a variety of nanoelectronics with silicon-based architectures and flexible, magnetic, or superconducting materials. 
    more » « less
  2. Abstract Interface engineering at complex oxide heterostructures enables a wide range of electronic functionalities critical for next‐generation devices. Here it is demonstrated that ultra‐low‐voltage electron beam lithography (ULV‐EBL) creates high‐quality mesoscale structures at LaAlO3/SrTiO3(LAO/STO) interfaces with greater efficiency than conventional methods. Nanowires, tunnel barriers, and electron waveguides are successfully patterned that exhibit distinctive transport characteristics including 1D superconductivity, nonlinear current–voltage behavior, and ballistic electron flow. While conductive atomic force microscopy (c‐AFM) previously enabled similar interface modifications, ULV‐EBL provides significantly faster patterning speeds (10 mm s−1vs 1 µm s−1), wafer‐scale capability (>(10 cm)2vs <(90 µm)2), and maintenance of pattern quality under vacuum conditions. Additionally, an efficient oxygen plasma treatment method is developed for pattern erasure and surface cleaning, which reveals novel surface reaction dynamics at oxide interfaces. These capabilities establish ULV‐EBL as a versatile approach for scalable interface engineering in complex oxide heterostructures, with potential applications in reconfigurable electronics, sensors, and oxide‐based devices. 
    more » « less
  3. Abstract Strongly correlated electronic systems exhibit a wealth of unconventional behavior stemming from strong electron-electron interactions. The LaAlO3/SrTiO3(LAO/STO) heterostructure supports rich and varied low-temperature transport characteristics including low-density superconductivity, and electron pairing without superconductivity for which the microscopic origins is still not understood. LAO/STO also exhibits inexplicable signatures of electronic nematicity via nonlinear and anomalous Hall effects. Nanoscale control over the conductivity of the LAO/STO interface enables mesoscopic experiments that can probe these effects and address their microscopic origins. Here we report a direct correlation between electron pairing without superconductivity, anomalous Hall effect and electronic nematicity in quasi-1D ballistic nanoscale LAO/STO Hall crosses. The characteristic magnetic field at which the Hall coefficient changes directly coincides with the depairing of non-superconducting pairs showing a strong correlation between the two distinct phenomena. Angle-dependent Hall measurements further reveal an onset of electronic nematicity that again coincides with the electron pairing transition, unveiling a rotational symmetry breaking due to the transition from paired to unpaired phases at the interface. The results presented here highlights the influence of preformed electron pairs on the transport properties of LAO/STO and provide evidence of the elusive pairing “glue” that gives rise to electron pairing in SrTiO3-based systems. 
    more » « less
  4. Abstract A variety of mechanisms are reported to play critical roles in contributing to the high carrier/electron mobility in oxide/SrTiO3(STO) heterostructures. By using La0.95Sr0.05TiO3(LSTO) epitaxially grown on different single crystal substrates (such as STO, GdScO3, LaAlO3, (LaAlO3)0.3(Sr2AlTaO6)0.7, and CeO2buffered STO) as the model systems, the formation of a conducting substrate surface layer (CSSL) on STO substrate is shown at relatively low growth temperature and high oxygen pressure (725 °C, 5 × 10–4 Torr), which contributes to the enhanced conductivity of the LSTO/STO heterostructures. Different from the conventional oxygen vacancy model, this work reveals that the formation of the CSSL occurs when growing an oxide layer (LSTO in this case) on STO, while neither annealing nor the growth of an Au layer alone at the exact same growth condition generates the CSSL in STO. It demonstrates that the oxide layer actively pulls oxygen from STO substrate at given growth conditions, leading to the formation of the CSSL. The observations emphasize the oxygen transfer across film/substrate interface during the synthesis of oxide heterostructures playing a critical role in functional properties. 
    more » « less
  5. The discovery of two-dimensional superconductivity in LaAlO 3 / KTaO 3 (111) and (110) interfaces has raised significant interest in this system. In this paper, we report the first successful fabrication of a direct current superconducting quantum interference device (dc-SQUID) in the KTO system. The key device elements, superconducting weak links, are created by conductive atomic force microscope lithography, which can reversibly control the conductivity at the LAO/KTO (110) interface with nanoscale resolution. The periodic modulation of the SQUID critical current I c ( B ) with magnetic field corresponds well with our theoretical modeling, which reveals a large kinetic inductance of the superconducting two-dimensional electron gas in KTO. The kinetic inductance of the SQUID is tunable by electrical gating from the back, due to the large dielectric constant of KTO. The demonstration of weak links and SQUIDs in KTO broadens the scope for exploring the underlying physics of KTO superconductivity, including the role of spin-orbit coupling, pairing symmetry, and inhomogeneity. It also promotes KTO as a versatile platform for a growing family of quantum devices, which could be applicable in the realm of quantum computing and information. 
    more » « less