skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Inferring Binary Properties from Gravitational-Wave Signals
This review provides a conceptual and technical survey of methods for parameter estimation of gravitational-wave signals in ground-based interferometers such as Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo. We introduce the framework of Bayesian inference and provide an overview of models for the generation and detection of gravitational waves from compact binary mergers, focusing on the essential features that are observable in the signals. Within the traditional likelihood-based paradigm, we describe various approaches for enhancing the efficiency and robustness of parameter inference. This includes techniques for accelerating likelihood evaluations, such as heterodyne/relative binning, reduced-order quadrature, multibanding, and interpolation. We also cover methods to simplify the analysis to improve convergence, via reparameterization, importance sampling, and marginalization. We end with a discussion of recent developments in the application of likelihood-free (simulation-based) inference methods to gravitational-wave data analysis.  more » « less
Award ID(s):
2012086
PAR ID:
10633782
Author(s) / Creator(s):
;
Publisher / Repository:
Annual Reviews
Date Published:
Journal Name:
Annual Review of Nuclear and Particle Science
Volume:
74
Issue:
1
ISSN:
0163-8998
Page Range / eLocation ID:
207 to 332
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Since the very first detection of gravitational waves from the coalescence of two black holes in 2015, Bayesian statistical methods have been routinely applied by LIGO and Virgo to extract the signal out of noisy interferometric measurements, obtain point estimates of the physical parameters responsible for producing the signal, and rigorously quantify their uncertainties. Different computational techniques have been devised depending on the source of the gravitational radiation and the gravitational waveform model used. Prominent sources of gravitational waves are binary black hole or neutron star mergers, the only objects that have been observed by detectors to date. But also gravitational waves from core‐collapse supernovae, rapidly rotating neutron stars, and the stochastic gravitational‐wave background are in the sensitivity band of the ground‐based interferometers and expected to be observable in future observation runs. As nonlinearities of the complex waveforms and the high‐dimensional parameter spaces preclude analytic evaluation of the posterior distribution, posterior inference for all these sources relies on computer‐intensive simulation techniques such as Markov chain Monte Carlo methods. A review of state‐of‐the‐art Bayesian statistical parameter estimation methods will be given for researchers in this cross‐disciplinary area of gravitational wave data analysis. This article is categorized under:Applications of Computational Statistics > Signal and Image Processing and CodingStatistical and Graphical Methods of Data Analysis > Markov Chain Monte Carlo (MCMC)Statistical Models > Time Series Models 
    more » « less
  2. null (Ed.)
    Third-generation (3G) gravitational-wave detectors will observe thousands of coalescing neutron star binaries with unprecedented fidelity. Extracting the highest precision science from these signals is expected to be challenging owing to both high signal-to-noise ratios and long-duration signals. We demonstrate that current Bayesian inference paradigms can be extended to the analysis of binary neutron star signals without breaking the computational bank. We construct reduced order models for ∼90minute long gravitational-wave signals, covering the observing band (5−2048Hz), speeding up inference by a factor of ∼1.3×10^4 compared to the calculation times without reduced order models. The reduced order models incorporate key physics including the effects of tidal deformability, amplitude modulation due to the Earth's rotation, and spin-induced orbital precession. We show how reduced order modeling can accelerate inference on data containing multiple, overlapping gravitational-wave signals, and determine the speedup as a function of the number of overlapping signals. Thus, we conclude that Bayesian inference is computationally tractable for the long-lived, overlapping, high signal-to-noise-ratio events present in 3G observatories. 
    more » « less
  3. Gravitational waves provide a unique tool for observational astronomy. While the first LIGO–Virgo catalogue of gravitational wave transients (GWTC-1) contains 11 signals from black hole and neutron star binaries, the number of observations is increasing rapidly as detector sensitivity improves. To extract information from the observed signals, it is imperative to have fast, flexible, and scalable inference techniques. In a previous paper, we introduced BILBY: a modular and user-friendly Bayesian inference library adapted to address the needs of gravitational-wave inference. In this work, we demonstrate that BILBY produces reliable results for simulated gravitational-wave signals from compact binary mergers, and verify that it accurately reproduces results reported for the 11 GWTC-1 signals. Additionally, we provide configuration and output files for all analyses to allow for easy reproduction, modification, and future use. This work establishes that BILBY is primed and ready to analyse the rapidly growing population of compact binary coalescence gravitational-wave signals. 
    more » « less
  4. In this work, we review the effective field theory framework to search for Lorentz and CPT symmetry breaking during the propagation of gravitational waves. The article is written so as to bridge the gap between the theory of spacetime-symmetry breaking and the analysis of gravitational-wave signals detected by ground-based interferometers. The primary physical effects beyond General Relativity that we explore here are dispersion and birefringence of gravitational waves. We discuss their implementation in the open-source LIGO-Virgo algorithm library suite, and we discuss the statistical method used to perform a Bayesian inference of the posterior probability of the coefficients for symmetry-breaking. We present preliminary results of this work in the form of simulations of modified gravitational waveforms, together with sensitivity studies of the measurements of the coefficients for Lorentz and CPT violation. The findings show the high potential of gravitational wave sources across the sky to sensitively probe for these signals of new physics. 
    more » « less
  5. This paper presents the Learning the Universe Implicit Likelihood Inference (LtU-ILI) pipeline, a codebase for rapid, user-friendly, and cutting-edge machine learning (ML) inference in astrophysics and cosmology. The pipeline includes software for implementing various neural architectures, training schema, priors, and density estimators in a manner easily adaptable to any research workflow. It includes comprehensive validation metrics to assess posterior estimate coverage, enhancing the reliability of inferred results. Additionally, the pipeline is easily parallelizable, designed for efficient exploration of modeling hyperparameters. To demonstrate its capabilities, we present real applications across a range of astrophysics and cosmology problems, such as: estimating galaxy cluster masses from X-ray photometry; inferring cosmology from matter power spectra and halo point clouds; characterising progenitors in gravitational wave signals; capturing physical dust parameters from galaxy colors and luminosities; and establishing properties of semi-analytic models of galaxy formation. We also include exhaustive benchmarking and comparisons of all implemented methods as well as discussions about the challenges and pitfalls of ML inference in astronomical sciences. All code and examples are made publicly available at https://github.com/maho3/ltu-ili. 
    more » « less