Inocybe is the largest genus in the family Inocybaceae, with approximately 1000 species worldwide. Basic data on the species diversity, geographic distribution, and the infrageneric framework of Inocybe are still incomplete because of the intricate nature of this genus, which includes numerous unrecognized taxa that exist around the world. A multigene phylogeny of the I. umbratica–paludinella group, initially designated as the “I. angustifolia subgroup”, was conducted using the ITS-28S-rpb2 nucleotide datasets. The seven species, I. alabamensis, I. angustifolia, I. argenteolutea, I. olivaceonigra, I. paludinella, I. subangustifolia, and I. umbratica, were confirmed as members of this species group. At the genus level, the I. umbratica–paludinella group is a sister to the lineage of the unifying I. castanea and an undescribed species. Inocybe sect. Umbraticae sect. nov. was proposed to accommodate species in the I. umbratica–paludinella group and the I. castanea lineage. This section now comprises eight documented species and nine new species from China, as described in this paper. Additionally, new geographical distributions of I. angustifolia and I. castanea in China are reported. The nine new species and I. angustifolia, I. castanea, I. olivaceonigra, and I. umbratica are described in detail and illustrated herein with color plates based on Chinese materials. A global key to 17 species in the section Umbraticae is provided. The results of the current study provide a more detailed basis for the accurate identification of species in the I. umbratica-paludinella group and a better understanding of their phylogenetic placement. 
                        more » 
                        « less   
                    
                            
                            Four new nodulose-spored species of Inocybe ( Agaricales ) from West Africa
                        
                    
    
            We describe four new nodulose-spored species ofInocybefrom tropical regions of Africa:I. beninensis, I. flavipes, I. fuscobrunneaandI. pallidiangulata.The new species are recognised based on morphological data and phylogenetic analyses of ITS, 28S andRPB2sequences. Phylogenetic analyses indicated thatI. flavipesandI. beninensisare part of a subclade leading to theI. calidagroup.Inocybe fuscobrunneaappears sister to theI. asterosporagroup.Inocybe pallidiangulatais nested within a clade of mainly tropical species from South Asia, Africa, and South America, close to the subclade ofI. lilacinosquamosaandI. ayangannaefrom Guyana. Complete descriptions and illustrations, including photographs and line drawings, and a key to nodulose-spored taxa of tropical African species ofInocybeare provided. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2030779
- PAR ID:
- 10633792
- Publisher / Repository:
- Westerdijk Fungal Biodiversity Institute in the Netherlands
- Date Published:
- Journal Name:
- Fungal Systematics and Evolution
- Volume:
- 10
- Issue:
- 1
- ISSN:
- 2589-3823
- Page Range / eLocation ID:
- 1 to 18
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract The Platypleurini is a large group of charismatic cicadas distributed from Cape Agulhas in South Africa, through tropical Africa, Madagascar, India and eastern Asia to Japan, with generic diversity concentrated in equatorial and southern Africa. This distribution suggests the possibility of a Gondwanan origin and dispersal to eastern Asia from Africa or India. We used a four‐gene (three mitochondrial) molecular dataset, fossil calibrations and molecular clock information to explore the phylogenetic relationships of the platypleurine cicadas and the timing and geography of their diversification. The earliest splits in the tribe were found to separate forest genera in Madagascar and equatorial Africa from the main radiation, and all of the Asian/Indian species sampled formed a younger clade nested well within the African taxa. The tribe appears to have diversified during the Cenozoic, beginningc. 50–32 Ma, with most extant African lineages originating in the Miocene or later, well after the breakup of the Gondwanan landmass. Biogeographical analysis suggests an African origin for the tribe and a single dispersal event founding the Asian platypleurines, although additional taxon sampling and genetic data will be needed to confirm this pattern because key nodes in the tree are still weakly supported. Two Platypleurini genera from Madagascar (PycnaAmyot & Audinet‐Serville,YangaDistant) are found to have originated by late Miocene dispersal of a single lineage from Africa. The genusPlatypleurais recovered as polyphyletic, withPlatypleura signiferaWalker from South Africa and many Asian/Indian species apparently requiring assignment to different genera, and a newPlatypleuraconcept is proposed with the synonymization ofAzanicadaVilletsyn.n.The generaOrapaDistant andHamzaDistant, currently listed within separate tribes but suspected of platypleurine affinity, are nested deeply within the Platypleurini radiation. The tribe Orapinisyn.n. is here synonymized while the tribe Hamzini is pending a decision of the ICZN to preserve nomenclatorial stability.more » « less
- 
            null (Ed.)The family Inocybaceae has been poorly studied in Africa. Here we describe the first species of the genus Mallocybe from West African and Zambian woodlands dominated by ectomycorrhizal trees of Fabaceae and Phyllanthaceae. The new species M. africana is characterized by orange-brown fruitbodies, a fibrillose pileus, a stipe tapered towards the base and large ellipsoid basidiospores. It resembles many north and south temperate species of Mallocybe but is most closely related to the southeast Asian tropical species, M. errata. M. africana is widely distributed in West Africa (Benin, Togo, Burkina Faso and Ivory Coast) extending to South-eastern Africa in Zambia. Phylogenetic analyses based on 5.8S rDNA, nLSU and RPB2 sequence data confirm that M. africana is nested within Mallocybe. A complete morphological description and illustrations, including photographs and line drawings, are presented.more » « less
- 
            Species of the genus Phaeohelotium ( Leotiomycetes : Helotiaceae ) are cup fungi that grow on decaying wood, leaves, litter, and directly on soil. Northern Hemisphere species are primarily found on litter and wood, whereas in the Southern Hemisphere the genus includes a mix of saprotrophs as well as taxa that grow on soil in association with ectomycorrhizal trees. The diversity of this genus has not been fully explored in southern South America. Here we describe two species from Chile, Phaeohelotium maiusaurantium sp. nov . and Ph. pallidum sp. nov ., found on soil in Patagonian Nothofagaceae -dominated forests. We present macro- and micromorphological descriptions, illustrations, and molecular phylogenetic analyses. The two new species are placed in Phaeohelotium with high support in our 15-locus phylogeny as well as phylogenetic reconstructions based on the internal transcribed spacer (ITS) region of the nuclear ribosomal RNA gene. Our ITS phylogeny places both Ph. maiusaurantium and Ph. pallidum in a well-supported subclade that includes ectomycorrhizal root tip samples from Australasia. Similar species can be separated from these new taxa based on morphological characteristics, biogeography, substrate, and sequence data. In addition, two unnamed species from Chilean Nothofagaceae forests ( Phaeohelotium sp. 1 and Phaeohelotium sp. 2) are documented from scant collections and sequence data and await description until more material becomes available.more » « less
- 
            ABSTRACT AimThe aim of the current study is to conduct a comprehensive phylogenetic analysis of the genusArbaciato elucidate the evolution and phylogenetic relationships among all extant species and reevaluate the presence of geographic structure within species that have wide, fragmented distributions. LocationSpecimens ofArbaciawere collected from 34 localities spanning the Atlantic and Pacific Oceans, and the Mediterranean Sea. MethodsWe obtained sequences from three mitochondrial markers (COI, 16S and the control region and adjacent tRNAs) and two nuclear markers (28S and 18S; the latter ultimately excluded from the final analyses). Phylogenetic trees were constructed using maximum likelihood and Bayesian inference approaches. A time‐calibrated phylogenetic tree was inferred using a relaxed Bayesian molecular clock and three fossil calibration points. ResultsOur analysis supports the monophyly of the genusArbacia, including the speciesArbacia nigra(previously assigned to the monotypic genusTetrapygus). The new phylogenetic topology suggests an alternative biogeographic scenario of initial divergence between Atlantic and Pacific subclades occurring approximately 9 million years ago. The dispersal and subsequent diversification of the Pacific subclade to the southeast Pacific coincides with the onset of glacial and interglacial cycles in Patagonia. In the Atlantic subclade, the split betweenA. punctulataandA. lixulaoccurred 3.01–6.30 (median 3.74 million years ago), possibly associated with the strengthening of the Gulf Stream current connecting the western and eastern Atlantic. Our study also reveals significant genetic and phylogeographic structures within both Atlantic species, indicating ongoing differentiation processes between populations. Main ConclusionOur study provides valuable insights into the evolutionary history and biogeography of the genusArbaciaand highlights the complex interplay between historical climate changes and oceanic currents in shaping the distribution and diversification of echinoids in the Atlantic and Pacific Oceans.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    