Summary White oak (Quercus alba) is an abundant forest tree species across eastern North America that is ecologically, culturally, and economically important.We report the first haplotype‐resolved chromosome‐scale genome assembly ofQ. albaand conduct comparative analyses of genome structure and gene content against other published Fagaceae genomes. We investigate the genetic diversity of this widespread species and the phylogenetic relationships among oaks using whole genome data.Despite strongly conserved chromosome synteny and genome size acrossQuercus, certain gene families have undergone rapid changes in size, including defense genes. Unbiased annotation of resistance (R) genes across oaks revealed that the overall number of R genes is similar across species – as are the chromosomal locations of R gene clusters – but, gene number within clusters is more labile. We found thatQ. albahas high genetic diversity, much of which predates its divergence from other oaks and likely impacts divergence time estimations. Our phylogenetic results highlight widespread phylogenetic discordance across the genus.The white oak genome represents a major new resource for studying genome diversity and evolution inQuercus. Additionally, we show that unbiased gene annotation is key to accurately assessing R gene evolution inQuercus.
more »
« less
Evolutionary transition to the ectomycorrhizal habit in the genomes of a hyperdiverse lineage of mushroom‐forming fungi
Summary The ectomycorrhizal (ECM) symbiosis has independently evolved from diverse types of saprotrophic ancestors. In this study, we seek to identify genomic signatures of the transition to the ECM habit within the hyperdiverse Russulaceae.We present comparative analyses of the genomic architecture and the total and secreted gene repertoires of 18 species across the order Russulales, of which 13 are newly sequenced, including a representative of a saprotrophic member of Russulaceae,Gloeopeniophorella convolvens.The genomes of ECM Russulaceae are characterized by a loss of genes for plant cell wall‐degrading enzymes (PCWDEs), an expansion of genome size through increased transposable element (TE) content, a reduction in secondary metabolism clusters, and an association of small secreted proteins (SSPs) with TE ‘nests’, or dense aggregations of TEs. Some PCWDEs have been retained or even expanded, mostly in a species‐specific manner. The genome ofG. convolvenspossesses some characteristics of ECM genomes (e.g. loss of some PCWDEs, TE expansion, reduction in secondary metabolism clusters).Functional specialization in ECM decomposition may drive diversification. Accelerated gene evolution predates the evolution of the ECM habit, indicating that changes in genome architecture and gene content may be necessary to prime the evolutionary switch.
more »
« less
- Award ID(s):
- 2030779
- PAR ID:
- 10633794
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- New Phytologist
- Volume:
- 233
- Issue:
- 5
- ISSN:
- 0028-646X
- Page Range / eLocation ID:
- 2294 to 2309
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary Eukaryotic genomes harbor many forms of variation, including nucleotide diversity and structural polymorphisms, which experience natural selection and contribute to genome evolution and biodiversity. However, harnessing this variation for agriculture hinges on our ability to detect, quantify, catalog, and utilize genetic diversity.Here, we explore seven complete genomes of the emerging biofuel crop pennycress (Thlaspi arvense) drawn from across the species’s current genetic diversity to catalogue variation in genome structure and content.Across this new pangenome resource, we find contrasting evolutionary modes in different genomic regions. Gene-poor, repeat-rich pericentromeric regions experience frequent rearrangements, including repeated centromere repositioning. In contrast, conserved gene-dense chromosome arms maintain large-scale synteny across accessions, even in fast-evolving immune genes where microsynteny breaks down across species but the macrosynteny of gene cluster positioning is maintained.Our findings highlight that multiple elements of the genome experience dynamic evolution that conserves functional content on the chromosome scale but allows rearrangement and presence-absence variation on a local scale. This diversity is invisible to classical reference-based approaches and highlights the strength and utility of pangenomic resources. These results provide a valuable case study of rapid genomic structural evolution within a species and powerful resources for crop development in an emerging biofuel crop.more » « less
-
Summary Although secondary metabolites are typically associated with competitive or pathogenic interactions, the high bioactivity of endophytic fungi in the Xylariales, coupled with their abundance and broad host ranges spanning all lineages of land plants and lichens, suggests that enhanced secondary metabolism might facilitate symbioses with phylogenetically diverse hosts.Here, we examined secondary metabolite gene clusters (SMGCs) across 96 Xylariales genomes in two clades (Xylariaceae s.l. and Hypoxylaceae), including 88 newly sequenced genomes of endophytes and closely related saprotrophs and pathogens. We paired genomic data with extensive metadata on endophyte hosts and substrates, enabling us to examine genomic factors related to the breadth of symbiotic interactions and ecological roles.All genomes contain hyperabundant SMGCs; however, Xylariaceae have increased numbers of gene duplications, horizontal gene transfers (HGTs) and SMGCs. Enhanced metabolic diversity of endophytes is associated with a greater diversity of hosts and increased capacity for lignocellulose decomposition.Our results suggest that, as host and substrate generalists, Xylariaceae endophytes experience greater selection to diversify SMGCs compared with more ecologically specialised Hypoxylaceae species. Overall, our results provide new evidence that SMGCs may facilitate symbiosis with phylogenetically diverse hosts, highlighting the importance of microbial symbioses to drive fungal metabolic diversity.more » « less
-
Abstract Ectomycorrhizal (ECM) fungi have long been thought to reduce litter decomposition in nitrogen (N)‐limited ecosystems by outcompeting saprotrophs for litter N (a phenomenon known as the ‘Gadgil effect’). However, recent research has called the generality of this effect into question, by demonstrating that ECM fungi can increase or decrease organic matter decomposition in different forests. The ecological factors driving such variation in the size and direction of ECM fungal effects on decomposition remain unclear.Here, we tested the hypothesis that ECM fungi would suppress decomposition of N‐poor, recalcitrant litter more in forests with lower N‐availability by exacerbating saprotrophic N limitation. We conducted an in situ ECM fungal and root reduction experiment (via soil trenching) in nine pine forests across three US states, which varied in soil and litter N content, climate and pine host (Pinus muricatain California,P. elliottiiin Florida and P.resinosain Minnesota). In each site, we decomposed needle litter from (1) a pine species native to that site and (2) a common litter,P. strobus, for 1 year.Contrary to our expectations, ECM fungi either stimulated (California) or had no effect on (Florida and Minnesota) pine needle decomposition. Across sites, ECM fungal stimulation of decomposition did increase with total soil N content, but was unrelated to inorganic N availability. Furthermore, despite previous work suggesting that competition for N structures ECM fungal–saprotroph interactions, trenching effects on decomposition did not differ between pine litter types, despite large differences in initial litter C:N ratios, recalcitrance and net litter N immobilization.Synthesis. Taken together, our results add to a growing body of evidence that the ‘Gadgil effect’ is not universal, even in the N‐poor litter of temperate pine forests where it was first described and is often invoked. Furthermore, the inconsistency of relationships between trenching effects with different metrics of decomposer N supply and demand calls into question the central role of N in structuring fungal interguild interactions.more » « less
-
Summary There is growing evidence that cytonuclear incompatibilities (i.e. disruption of cytonuclear coadaptation) might contribute to the speciation process. In a former study, we described the possible involvement of plastid–nuclear incompatibilities in the reproductive isolation between four lineages ofSilene nutans(Caryophyllaceae). Because organellar genomes are usually cotransmitted, we assessed whether the mitochondrial genome could also be involved in the speciation process, knowing that the gynodioecious breeding system ofS. nutansis expected to impact the evolutionary dynamics of this genome.Using hybrid capture and high‐throughput DNA sequencing, we analyzed diversity patterns in the genic content of the organellar genomes in the fourS. nutanslineages.Contrary to the plastid genome, which exhibited a large number of fixed substitutions between lineages, extensive sharing of polymorphisms between lineages was found in the mitochondrial genome. In addition, numerous recombination‐like events were detected in the mitochondrial genome, loosening the linkage disequilibrium between the organellar genomes and leading to decoupled evolution.These results suggest that gynodioecy shaped mitochondrial diversity through balancing selection, maintaining ancestral polymorphism and, thus, limiting the involvement of the mitochondrial genome in evolution of hybrid inviability betweenS. nutanslineages.more » « less
An official website of the United States government

