skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on December 4, 2025

Title: Pnictogen-based vanadacyclobutadiene complexes
The reactivity of a [VV] alkylidyne with unsaturated substrates such as NCR (R = Ad or Ph) and PCAd leads to the formation of rare transition metal complexes featuring an α-aza-vanadacyclobutadiene and a β-phospha-vanadacyclobutadiene moieties.  more » « less
Award ID(s):
2154620
PAR ID:
10633872
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Chemical Science
Volume:
15
Issue:
47
ISSN:
2041-6520
Page Range / eLocation ID:
19752 to 19763
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Detailed electrical and photoemission studies were carried out to probe the chemical nature of the insulating ground state of VO2, whose properties have been an issue for accurate prediction by common theoretical probes. The effects of a systematic modulation of oxygen over-stoichiometry of VO2from 1.86 to 2.44 on the band structure and insulator–metal transitions are presented for the first time. Results offer a different perspective on the temperature- and doping-induced IMT process. They suggest that charge fluctuation in the metallic phase of intrinsic VO2results in the formation of eand h+pairs that lead to delocalized polaronic V3+and V5+cation states. The metal-to-insulator transition is linked to the cooperative effects of changes in the V–O bond length, localization of V3+electrons at V5+sites, which results in the formation of V4+–V4+dimers, and removal of$$\pi^{*}$$ π screening electrons. It is shown that the nature of phase transitions is linked to the lattice V3+/V5+concentrations of stoichiometric VO2and that electronic transitions are regulated by the interplay between charge fluctuation, charge redistribution, and structural transition. 
    more » « less
  2. Abstract Collisionless systems often exhibit nonthermal power-law tails in their distribution functions. Interestingly, collisionless plasmas in various physical scenarios (e.g., the ion population of the solar wind) feature av−5tail in their velocity (v) distribution, whose origin has been a long-standing puzzle. We show this power-law tail to be a natural outcome of the collisionless relaxation of driven electrostatic plasmas. Using a quasi-linear analysis of the perturbed Vlasov–Poisson equations, we show that the coarse-grained mean distribution function (DF),f0, follows a quasi-linear diffusion equation with a diffusion coefficientD(v) that depends onvthrough the plasma dielectric constant. If the plasma is isotropically forced on scales larger than the Debye length with a white-noise-like electric field,D(v) ∼v4forσ<v<ωP/k, withσthe thermal velocity,ωPthe plasma frequency, andkthe characteristic wavenumber of the perturbation; the corresponding quasi-steady-statef0develops av−(d+ 2)tail inddimensions (v−5tail in 3D), while the energy (E) distribution develops anE−2tail independent of dimensionality. Any redness of the noise only alters the scaling in the highvend. Nonresonant particles moving slower than the phase velocity of the plasma waves (ωP/k) experience a Debye-screened electric field, and significantly less (power-law suppressed) acceleration than the near-resonant particles. Thus, a Maxwellian DF develops a power-law tail, while its core (v<σ) eventually also heats up but over a much longer timescale. We definitively show that self-consistency (ignored in test-particle treatments) is crucial for the emergence of the universalv−5tail. 
    more » « less
  3. Context.Accurate42Ti(p,γ)43V reaction rates are crucial for understanding the nucleosynthesis path of the rapid capture process (rpprocess) that occurs in X-ray bursts. Aims.We aim to improve the thermonuclear rates of42Ti(p,γ)43V based on more complete resonance information and a more accurate direct component, together with the recently released nuclear masses data. We also explore the impact of the newly obtained rates on therpprocess. Methods.We reevaluated the reaction rate of42Ti(p,γ)43V by the sum of the isolated resonance contribution instead of the Hauser-Feshbach statistical model. We used a Monte Carlo method to derive the associated uncertainties of new rates. The nucleosynthesis simulations were performed via the NuGrid post-processing code ppn. Results.The new rates differ from previous estimations due to the use of a series of updated resonance parameters and a direct S factor. Compared with the previous results from the Hauser-Feshbach statistical model, which assumes compound nucleus43V with a sufficiently high-level density in the energy region of astrophysical interest, large differences exist over the entire temperature region ofrp-process interest, up to two orders of magnitude. We consistently calculated the photodisintegration rate using our new nuclear masses via the detailed balance principle, and found the discrepancies among the different reverse rates are much larger than those for the forward rate, up to ten orders of magnitude at the temperature of 108K. Using a trajectory with a peak temperature of 1.95×109K, we performed therp-process nucleosynthesis simulations to investigate the impact of the new rates. Our calculations show that the adoption of the new forward and reverse rates result in abundance variations for Sc and Ca of 128% and 49%, respectively, compared to the variations for the statistical model rates. On the other hand, the overall abundance pattern is not significantly affected. The results of using new rates also confirm that therp-process path does not bypass the isotope43V. Conclusions.Our study found that the Hauser-Feshbach statistical model is inappropriate to the reaction rate evaluation for42Ti(p,γ)43V. The adoption of the new rates confirms that the reaction path of42Ti(p,γ)43V(p,γ)44Cr(β+)44V is a key branch of therpprocess in X-ray bursts. 
    more » « less
  4. Abstract We report threshold voltage (VTH) control in ultrawide bandgap Al0.4Ga0.6N-channel metal oxide semiconductor heterostructure field-effect transistors using a high-temperature (300 °C) anneal of the high-kZrO2gate-insulator. Annealing switched the polarity of the fixed charges at the ZrO2/AlGaN interface from +5.5 × 1013cm−2to −4.2 × 1013cm−2, pinningVTHat ∼ (−12 V), reducing gate leakage by ∼103, and improving subthreshold swing 2× (116 mV decade−1). It also enabled the gate to repeatedly withstand voltages from −40 to +18 V, allowing the channel to be overdriven doubling the peak currents to ∼0.5 A mm−1
    more » « less
  5. Abstract We introduce the heterocumulene ligand [(Ad)NCC(tBu)](Ad=1‐adamantyl (C10H15),tBu=tert‐butyl, (C4H9)), which can adopt two forms, the azaalleneyl and ynamide. This ligand platform can undergo a reversible chelotropic shift using Brønsted acid‐base chemistry, which promotes an unprecedented spin‐state change of the [VIII] ion. These unique scaffolds are prepared via addition of 1‐adamantyl isonitrile (C≡NAd) across the alkylidyne in complexes [(BDI)V≡CtBu(OTf)] (A) (BDI=ArNC(CH3)CHC(CH3)NAr), Ar=2,6‐iPr2C6H3) and [(dBDI)V≡CtBu(OEt2)] (B) (dBDI2−=ArNC(CH3)CHC(CH2)NAr). ComplexAreacts with C≡NAd, to generate the high‐spin [VIII] complex with a κ1‐N‐ynamide ligand, [(BDI)V{κ1‐N‐(Ad)NCC(tBu)}(OTf)] (1). Conversely,Breacts with C≡NAd to generate a low‐spin [VIII] diamagnetic complex having a chelated κ2‐C,N‐azaalleneyl ligand, [(dBDI)V{κ2‐N,C‐(Ad)NCC(tBu)}] (2). Theoretical studies have been applied to better understand the mechanism of formation of2and the electronic reconfiguration upon structural rearrangement by the alteration of ligand denticity between1and2. 
    more » « less