skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A spin–flip study of the diradical isomers of pyrrole, furan, and thiophene
Heteroaromatic species are commonly found in complex gaseous mixtures, from tobacco smoke to petroleum and asphaltene combustion products. At high temperatures, C–H bond rupture produces various dehydro radical isomers. We have used the spin–flip formulation of equation-of-motion coupled cluster theory with single and double substitutions (EOM-SF-CCSD) to characterize the energies and wave functions of the lowest lying singlet and triplet states of the diradical (2,3), (2,4), (2,5), and (3,4) di-dehydro isomers of pyrrole, furan, and thiophene. In all cases, these diradicals are minima on the broken-symmetry ωB97X-D/cc-pVDZ potential energy surface. In most cases, the diradical geometries distort to enhance through-space or through-bond coupling in the singlet states and to avoid Coulombic or exchange repulsion in the triplet states. EOM-SF-CCSD results indicate that all diradical isomers are two-configurational, closed shell singlet states. The only exceptions to this are for (2,3) and (2,4) thiophene and (2,3) pyrrole, which each contain more than two configurations. In all cases, the leading term in the multiconfigurational diradical wave function doubly occupies the symmetric radical σ orbital, indicative of either through-space or 1,3 through-bond coupling. We utilized the nucleus-independent chemical shift (NICS) approach to qualitatively assess aromaticity and find that this property varies and may be related to the energetic splittings in these diradical isomers.  more » « less
Award ID(s):
2320718
PAR ID:
10634168
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
AIP
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
161
Issue:
15
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The energies and geometries of the lowest lying singlet and triplet states of the four diradicals formed by removing two H atoms from thiophene have been characterized. We utilized the highly correlated, multireference methods configuration interaction with single and double excitations with and without the Pople correction for size‐extensivity (MR‐CISD+Q and MR‐CISD) and averaged quadratic coupled cluster theory (MR‐AQCC). CAS (8,7) and CAS (10,8) active spaces involving σ, σ*, π, and π* orbitals were employed along with the cc‐pVDZ and cc‐pVTZ basis sets. The larger active space included the two electrons in the nonbonding sp2hybrid orbital on sulfur. We find that all didehydro isomers exist as planar, stable ground state singlets. The singlet‐triplet (S‐T) adiabatic gaps range from 15 to 25 kcal/mol while the vertical splittings are 21–35 kcal/mol. The 2,3 isomer has the lowest absolute ground state singlet energy and the largest adiabatic and vertical S‐T splitting. The ground states of the 2,3‐, and 2,5‐didehydrothiophene isomers are predicted to exhibit the smallest and largest diradical character, respectively, based on their electronic structures, spin densities and bonding analysis. To our knowledge, no experimental excitation energies of any of the didehydrothiophene isomers are available, and our computed MR‐AQCC/cc‐pVTZ data are believed to be among the most accurate computed results. This extensive study shows a competitive performance between MR‐AQCC and MR‐CISD+Q. 
    more » « less
  2. The anionic products following (H + H + ) abstraction from o -, m -, and p -methylphenol (cresol) are investigated using flowing afterglow-selected ion flow tube (FA-SIFT) mass spectrometry and anion photoelectron spectroscopy (PES). The PES of the multiple anion isomers formed in this reaction are reported, including those for the most abundant isomers, o -, m - and p -methylenephenoxide distonic radical anions. The electron affinity (EA) of the ground triplet electronic state of neutral m -methylenephenoxyl diradical was measured to be 2.227 ± 0.008 eV. However, the ground singlet electronic states of o - and p -methylenephenoxyl were found to be significantly stabilized by their resonance forms as a substituted cyclohexadienone, resulting in measured EAs of 1.217 ± 0.012 and 1.096 ± 0.007 eV, respectively. Upon electron photodetachment, the resulting neutral molecules were shown to have Franck–Condon active ring distortion vibrational modes with measured frequencies of 570 ± 180 and 450 ± 80 cm −1 for the ortho and para isomers, respectively. Photodetachment to excited electronic states was also investigated for all isomers, where similar vibrational modes were found to be Franck–Condon active, and singlet–triplet splittings are reported. The thermochemistry of these molecules was investigated using FA-SIFT combined with the acid bracketing technique to yield values of 341.4 ± 4.3, 349.1 ± 3.0, and 341.4 ± 4.3 kcal mol −1 for the o -, m -, and p -methylenephenol radicals, respectively. Construction of a thermodynamic cycle allowed for an experimental determination of the bond dissociation energy of the O–H bond of m -methylenephenol radical to be 86 ± 4 kcal mol −1 , while this bond is significantly weaker for the ortho and para isomers at 55 ± 5 and 52 ± 5 kcal mol −1 , respectively. Additional EAs and vibrational frequencies are reported for several methylphenyloxyl diradical isomers, the negative ions of which are also formed by the reaction of cresol with O − . 
    more » « less
  3. The robustness of nickelocene’s (NiCp2, Cp = cyclopentadienyl) magnetic anisotropy and addressability of its spin states make this molecular magnet attractive as a spin sensor. However, microscopic understanding of its magnetic anisotropy is still lacking, especially when NiCp2 is deposited on a surface to make quantum sensing devices. Quantum chemical calculations of such molecule/solid-state systems are limited to density functional theory (DFT) or DFT+U (Hubbard correction to DFT). We investigate the magnetic behavior of NiCp2 using the spin-flip variant of the equation-of-motion coupled-cluster (EOM-SF-CC) method and use the EOM-SF-CC results to benchmark SF-TD-DFT. Our first-principle calculations agree well with experimentally derived magnetic anisotropy and susceptibility values. The calculations show that magnetic anisotropy in NiCp2 originates from a large spin–orbit coupling (SOC) between the triplet ground state and the third singlet state, whereas the coupling with lower singlet excited states is negligible. We also considered a set of six ring-substituted NiCp2 derivatives and a model system of the NiCp2/MgO(001) adsorption complex, for which we used SF-TD-DFT method. To gain insight into the electronic structure of these systems, we analyze spinless transition density matrices and their natural transition orbitals (NTOs). The NTO analysis of SOCs explains how spin states and magnetic properties are retained upon modification of the NiCp2 coordination environment and upon its adsorption on a surface. Such resilience of the NiCp2 magnetic behavior supports using NiCp2 as a spin-probe molecule by functionalization of the tip of a scanning tunneling microscope. 
    more » « less
  4. Understanding the process of molecular photoexcitation is crucial in various fields, including drug development, materials science, photovoltaics, and more. The electronic vertical excitation energy is a critical property, for example in determining the singlet–triplet gap of chromophores. However, a full understanding of excited-state processes requires additional explorations of the excited-state potential energy surface and electronic properties, which is greatly aided by the availability of analytic energy gradients. Owing to its robust high accuracy over a wide range of chemical problems, equation-of-motion coupled cluster with single and double excitations (EOM-CCSD) is a powerful method for predicting excited-state properties, and the implementation of analytic gradients of many EOM-CCSD variants (excitation energies, ionization potentials, electron attachment energies, etc.) along with numerous successful applications highlights the flexibility of the method. In specific cases where a higher level of accuracy is needed or in more complex electronic structures, the inclusion of triple excitations becomes essential, for example, in the EOM-CCSD* approach of Saeh and Stanton. In this work, we derive and implement for the first time the analytic gradients of EOMEE-CCSD*, which also provides a template for analytic gradients of related excited-state methods with perturbative triple excitations. The capabilities of analytic EOMEE-CCSD* gradients are illustrated by several representative examples. 
    more » « less
  5. The equation-of-motion coupled-cluster singles and doubles method with double electron attachment (EOM-DEA-CCSD) is capable of computing reliable energies, wave functions, and first-order properties of excited states in diradicals and polyenes that have a significant doubly excited character with respect to the ground state, without the need for including the computationally expensive triple excitations. Here, we extend the capabilities of the EOM-DEA-CCSD method to the calculations of a multiphoton property, two-photon absorption (2PA) cross sections. Closed-form expressions for the 2PA cross sections are derived within the expectation-value approach using response wave functions. We analyze the performance of this new implementation by comparing the EOM-DEA-CCSD energies and 2PA cross sections with those computed using the CC3 quadratic response theory approach. As benchmark systems, we consider transitions to the states with doubly excited character in twisted ethene and in polyenes, for which EOM-EE-CCSD (EOM-CCSD for excitation energies) performs poorly. The EOM-DEA-CCSD 2PA cross sections are comparable with the CC3 results for twisted ethene; however, the discrepancies between the two methods are large for hexatriene. The observed trends are explained by configurational analysis of the 2PA channels. 
    more » « less