The dynamics and electromagnetic signatures of accretion in unequal-mass binary black hole inspirals
ABSTRACT We present a theoretical study of the gravitational wave (GW) driven inspirals of accreting black hole binaries with mass $$M = 10^7 M_\odot$$ and mass ratios between $$10^{-3}$$ and $$10^{-1}$$. Our results are based on analytic estimates, and grid-based hydrodynamics simulations run for many thousands of binary orbits before the merger. We show that the GW inspiral is evident in the light curves and colour evolution of a binary-hosting quasar over years to decades before a merger. The long-term electromagnetic (EM) signature is characterized by a gradual UV brightening and X-ray dimming, followed by an X-ray disappearance hours to days before the GW burst, and finally, a years-like re-brightening as the disc relaxes and refuels the remnant black hole. These time-scales are surprisingly insensitive to the normalization of the kinematic viscosity in the disc. The spectrum of quasi-thermal disc emission shows two peaks: one in the UV and another in the X-ray, associated with the outer and circum-secondary discs, respectively; emission from the inner disc is suppressed because the secondary consumes most of the inflowing gas. We discuss implications for real-time and archival EM follow-up of GW bursts detected by LISA.
more »
« less
An official website of the United States government
