skip to main content

Title: Multimessenger time-domain signatures of supermassive black hole binaries

Supermassive black hole binaries (SMBHBs) are a natural outcome of galaxy mergers and should form frequently in galactic nuclei. Sub-parsec binaries can be identified from their bright electromagnetic emission, e.g. Active Galactic Nuclei (AGNs) with Doppler shifted broad emission lines or AGN with periodic variability, as well as from the emission of strong gravitational radiation. The most massive binaries (with total mass >108M⊙) emit in the nanohertz band and are targeted by Pulsar Timing Arrays (PTAs). Here we examine the synergy between electromagnetic and gravitational wave signatures of SMBHBs. We connect both signals to the orbital dynamics of the binary and examine the common link between them, laying the foundation for joint multimessenger observations. We find that periodic variability arising from relativistic Doppler boost is the most promising electromagnetic signature to connect with GWs. We delineate the parameter space (binary total mass/chirp mass versus binary period/GW frequency) for which joint observations are feasible. Currently multimessenger detections are possible only for the most massive and nearby galaxies, limited by the sensitivity of PTAs. However, we demonstrate that as PTAs collect more data in the upcoming years, the overlapping parameter space is expected to expand significantly.

; ; ; ;
Award ID(s):
2020265 2009539 1945546 2108668 1908042 2007993
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
p. 5929-5944
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Pulsar timing array (PTA) experiments are becoming increasingly sensitive to gravitational waves (GWs) in the nanohertz frequency range, where the main astrophysical sources are supermassive black hole binaries (SMBHBs), which are expected to form following galaxy mergers. Some of these individual SMBHBs may power active galactic nuclei, and thus their binary parameters could be obtained electromagnetically, which makes it possible to apply electromagnetic (EM) information to aid the search for a GW signal in PTA data. In this work, we investigate the effects of such an EM-informed search on binary detection and parameter estimation by performing mock data analyses on simulated PTA data sets. We find that by applying EM priors, the Bayes factor of some injected signals with originally marginal or sub-threshold detectability (i.e., Bayes factor ∼1) can increase by a factor of a few to an order of magnitude, and thus an EM-informed targeted search is able to find hints of a signal when an uninformed search fails to find any. Additionally, by combining EM and GW data, one can achieve an overall improvement in parameter estimation, regardless of the source’s sky location or GW frequency. We discuss the implications for the multi-messenger studies of SMBHBs withmore »PTAs.« less
  2. Abstract

    The nanohertz gravitational wave background (GWB) is believed to be dominated by GW emission from supermassive black hole binaries (SMBHBs). Observations of several dual-active galactic nuclei (AGN) strongly suggest a link between AGN and SMBHBs, given that these dual-AGN systems will eventually form bound binary pairs. Here we develop an exploratory SMBHB population model based on empirically constrained quasar populations, allowing us to decompose the GWB amplitude into an underlying distribution of SMBH masses, SMBHB number density, and volume enclosing the GWB. Our approach also allows us to self-consistently predict the number of local SMBHB systems from the GWB amplitude. Interestingly, we find the local number density of SMBHBs implied by the common-process signal in the NANOGrav 12.5-yr data set to be roughly five times larger than previously predicted by other models. We also find that at most ∼25% of SMBHBs can be associated with quasars. Furthermore, our quasar-based approach predicts ≳95% of the GWB signal comes fromz≲ 2.5, and that SMBHBs contributing to the GWB have masses ≳108M. We also explore how different empirical galaxy–black hole scaling relations affect the local number density of GW sources, and find that relations predicting more massive black holes decrease the localmore »number density of SMBHBs. Overall, our results point to the important role that a measurement of the GWB will play in directly constraining the cosmic population of SMBHBs, as well as their connections to quasars and galaxy mergers.

    « less

    Neutron star–black hole (NSBH) mergers detected in gravitational waves have the potential to shed light on supernova physics, the dense matter equation of state, and the astrophysical processes that power their potential electromagnetic counterparts. We use the population of four candidate NSBH events detected in gravitational waves so far with a false alarm rate ≤1 yr−1 to constrain the mass and spin distributions and multimessenger prospects of these systems. We find that the black holes in NSBHs are both less massive and have smaller dimensionless spins than those in black hole binaries. We also find evidence for a mass gap between the most massive neutron stars and least massive black holes in NSBHs at 98.6-per cent credibility. Using an approach driven by gravitational-wave data rather than binary simulations, we find that fewer than 14 per cent of NSBH mergers detectable in gravitational waves will have an electromagnetic counterpart. While the inferred presence of a mass gap and fraction of sources with a counterpart depend on the event selection and prior knowledge of source classification, the conclusion that the black holes in NSBHs have lower masses and smaller spin parameters than those in black hole binaries is robust. Finally, we propose a method for themore »multimessenger analysis of NSBH mergers based on the non-detection of an electromagnetic counterpart and conclude that, even in the most optimistic case, the constraints on the neutron star equation of state that can be obtained with multimessenger NSBH detections are not competitive with those from gravitational-wave measurements of tides in binary neutron star mergers and radio and X-ray pulsar observations.

    « less
  4. Abstract

    Most stellar evolution models predict that black holes (BHs) should not exist above approximately 50–70M, the lower limit of the pair-instability mass gap. However, recent LIGO/Virgo detections indicate the existence of BHs with masses at and above this threshold. We suggest that massive BHs, including intermediate-mass BHs (IMBHs), can form in galactic nuclei through collisions between stellar-mass BHs and the surrounding main-sequence stars. Considering dynamical processes such as collisions, mass segregation, and relaxation, we find that this channel can be quite efficient, forming IMBHs as massive as 104M. This upper limit assumes that (1) the BHs accrete a substantial fraction of the stellar mass captured during each collision and (2) that the rate at which new stars are introduced into the region near the SMBH is high enough to offset depletion by stellar disruptions and star–star collisions. We discuss deviations from these key assumptions in the text. Our results suggest that BHs in the pair-instability mass gap and IMBHs may be ubiquitous in galactic centers. This formation channel has implications for observations. Collisions between stars and BHs can produce electromagnetic signatures, for example, from X-ray binaries and tidal disruption events. Additionally, formed through this channel, both BHs in themore »mass gap and IMBHs can merge with the SMBHs at the center of a galactic nucleus through gravitational waves. These gravitational-wave events are extreme- and intermediate-mass ratio inspirals.

    « less
  5. ABSTRACT Variable active galactic nuclei showing periodic light curves have been proposed as massive black hole binary (MBHB) candidates. In such scenarios, the periodicity can be due to relativistic Doppler-boosting of the emitted light. This hypothesis can be tested through the timing of scattered polarized light. Following the results of polarization studies in type I nuclei and of dynamical studies of MBHBs with circumbinary discs, we assume a coplanar equatorial scattering ring, whose elements contribute differently to the total polarized flux, due to different scattering angles, levels of Doppler boost, and line-of-sight time delays. We find that in the presence of an MBHB, both the degree of polarization and the polarization position angle have periodic modulations. The polarization angle oscillates around the semiminor axis of the projected MBHB orbital ellipse, with a frequency equal either to the binary’s orbital frequency (for large scattering screen radii), or twice this value (for smaller scattering structures). These distinctive features can be used to probe the nature of periodic MBHB candidates and to compile catalogues of the most promising sub-pc MBHBs. The identification of such polarization features in gravitational-wave (GW) detected MBHBs would enormously increase the amount of physical information about the sources, allowingmore »the measurement of the individual masses of the binary components, and the orientation of the line of nodes on the sky, even for monochromatic GW signals.« less