ABSTRACT Quantifying ecosystem services provided by mobile species like insectivorous bats remains a challenge, particularly in understanding where and how these services vary over space and time. Bats are known to offer valuable ecosystem services, such as mitigating insect pest damage to crops, reducing pesticide use, and reducing nuisance pest populations. However, determining where bats forage is difficult to monitor. In this study, we use a weather‐radar‐based bat‐monitoring algorithm to estimate bat foraging distributions during the peak season of 2019 in California's Northern Central Valley. This region is characterized by valuable agricultural crops and significant populations of both crop and nuisance pests, including midges, moths, mosquitos, and flies. Our results show that bat activity is high but unevenly distributed, with rice fields experiencing significantly elevated activity compared to other land cover types. Specifically, bat activity over rice fields is 1.5 times higher than over any other land cover class and nearly double that of any other agricultural land cover. While irrigated rice fields may provide abundant prey, wetland and water areas showed less than half the bat activity per hectare compared to rice fields. Controlling for land cover type, we found bat activity significantly associated with higher flying insect abundance, indicating that bats forage in areas where crop and nuisance pests are likely to be found. This study demonstrates the effectiveness of radar‐based bat monitoring in identifying where and when bats provide ecosystem services.
more »
« less
This content will become publicly available on April 17, 2026
Evaluating an Acoustic Method for Estimating Trends in Bat Summer Colony Counts with AudioMoth Recorders
Passive acoustic monitoring for bats has become a common method to determine species presence and activity levels. However, current acoustic methods are ineffective for monitoring species abundance at large summer colonies. We used synchronized acoustic and thermal-imaging data collected at 6 colonies of Myotis grisescens (Gray Bats) and found a significant positive relationship between acoustic energy and number of emerging bats. Our findings reinforce that acoustics have the potential to estimate population sizes of summer bat colonies. Additionally, we examined ultrasonic amplitude variance across 19 AudioMoth devices at 5 different gain settings and found significant differences among devices and settings. Further exploration into device variability and bat behavior are necessary to develop a robust model of population estimates using acoustic energy.
more »
« less
- Award ID(s):
- 2226886
- PAR ID:
- 10634275
- Publisher / Repository:
- Eagle Hill Institute
- Date Published:
- Journal Name:
- Journal of North American Bat Research
- ISSN:
- 2994-1075
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Echolocating bats and their eared insect prey are in an acoustic evolutionary war. Moths produce anti-bat sounds that startle bat predators, signal noxiousness, mimic unpalatable models and jam bat sonar. Tiger beetles (Cicindelidae) also purportedly produce ultrasound in response to bat attacks. Here we tested 19 tiger beetle species from seven genera and showed that they produce anti-bat signals to playback of authentic bat echolocation. The dominant frequency of beetle sounds substantially overlaps the sonar calls of sympatric bats. As tiger beetles are known to produce defensive chemicals such as benzaldehyde and hydrogen cyanide, we hypothesized that tiger beetle sounds are acoustically advertising their unpalatability. We presented captive big brown bats (Eptesicus fuscus) with seven different tiger beetle species and found that 90 out of 94 beetles were completely consumed, indicating that these tiger beetle species are not aposematically signalling. Instead, we show that the primary temporal and spectral characteristics of beetle warning sounds overlap with sympatric unpalatable tiger moth (Arctinae) sounds and that tiger beetles are probably Batesian mimics of noxious moth models. We predict that many insect taxa produce anti-bat sounds and that the acoustic mimicry rings of the night sky are hyperdiverse.more » « less
-
Selection of habitat is a key determinant of reproductive success, and the process of finding and choosing these sites is often influenced by the presence of conspecifics. Many bats frequently switch roosts, and some bats repeatedly find new roosts. To find roosts with conspecifics or group members, bats can use social cues. However, most research on how bats use social cues for roost-finding has focused on acoustic cues. Here, we review and discuss the evidence for bat roost selection using scent cues from guano and urine stains, which are present at most bat roosts. We outline reasons why bats might, or might not, use scent in roost detection and selection, and we review evidence on the possible use of guano and urine in roost-finding from eight studies with 12 bat species (across four families). Overall, the sparse evidence that exists indicates that scent cues from guano and urine are not a strong and consistent lure in the species and situations that were tested. Most studies had unclear results or found no effect. Two of the eight studies found weak experimental evidence for bats using guano or urine to select a roosting site. Even if guano and urine can indicate the presence of bats at a roost, it is possible that the resulting olfactory cues do not contain sufficient social information to be used in roost selection, in contrast to olfactory cues from scent marking. Studies of how bats use sensory cues beyond sound could contribute to a better understanding of bat social behavior and roosting ecology.more » « less
-
Bats are the second largest mammalian order, with over 1,300 species. These animals show diverse behaviors, diets, and habitats. Most bats produce ultrasonic vocalizations and perceive their environment by processing information carried by returning echoes of their calls. Echolocation is achieved through a sophisticated audio-vocal system that allows bats to emit and detect frequencies that can range from ten to hundreds of kilohertz. In addition, most bat species are gregarious, and produce social communication calls that vary in complexity, form, and function across species. In this article, we (a) highlight the value of bats as model species for research on social communication, (b) review behavioral and neurophysiological studies of bat acoustic communication signal production and processing, and (c) discuss important directions for future research in this field. We propose that comparative studies of bat acoustic communication can provide new insights into sound processing and vocal learning across the animal kingdom.more » « less
-
Abstract Understanding biodiversity patterns as well as drivers of population declines, and range losses provides crucial baselines for monitoring and conservation. However, the information needed to evaluate such trends remains unstandardised and sparsely available for many taxonomic groups and habitats, including the cave-dwelling bats and cave ecosystems. We developed the DarkCideS 1.0 ( https://darkcides.org/ ), a global database of bat caves and species synthesised from publicly available information and datasets. The DarkCideS 1.0 is by far the largest database for cave-dwelling bats, which contains information for geographical location, ecological status, species traits, and parasites and hyperparasites for 679 bat species are known to occur in caves or use caves in part of their life histories. The database currently contains 6746 georeferenced occurrences for 402 cave-dwelling bat species from 2002 cave sites in 46 countries and 12 terrestrial biomes. The database has been developed to be collaborative and open-access, allowing continuous data-sharing among the community of bat researchers and conservation biologists to advance bat research and comparative monitoring and prioritisation for conservation.more » « less
An official website of the United States government
