skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on May 27, 2026

Title: Preprocessing of Physician Notes by LLMs Improves Clinical Concept Extraction Without Information Loss
Clinician notes are a rich source of patient information, but often contain inconsistencies due to varied writing styles, abbreviations, medical jargon, grammatical errors, and non-standard formatting. These inconsistencies hinder their direct use in patient care and degrade the performance of downstream computational applications that rely on these notes as input, such as quality improvement, population health analytics, precision medicine, clinical decision support, and research. We present a large-language-model (LLM) approach to the preprocessing of 1618 neurology notes. The LLM corrected spelling and grammatical errors, expanded acronyms, and standardized terminology and formatting, without altering clinical content. Expert review of randomly sampled notes confirmed that no significant information was lost. To evaluate downstream impact, we applied an ontology-based NLP pipeline (Doc2Hpo) to extract biomedical concepts from the notes before and after editing. F1 scores for Human Phenotype Ontology extraction improved from 0.40 to 0.61, confirming our hypothesis that better inputs yielded better outputs. We conclude that LLM-based preprocessing is an effective error correction strategy that improves data quality at the level of free text in clinical notes. This approach may enhance the performance of a broad class of downstream applications that derive their input from unstructured clinical documentation.  more » « less
Award ID(s):
2423235
PAR ID:
10634297
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Luo, Ling; Recupero, Diego Reforgiato
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Information
ISSN:
2078-2489
Subject(s) / Keyword(s):
Keywords: electronic health records physician notes human phenotype ontology Doc2Hpo large language models data interoperability concept extraction
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sepsis is a dysregulated host response to infection with high mortality and morbidity. Early detection and intervention have been shown to improve patient outcomes, but existing computational models relying on structured electronic health record data often miss contextual information from unstructured clinical notes. This study introduces COMPOSER-LLM, an open-source large language model (LLM) integrated with the COMPOSER model to enhance early sepsis prediction. For high-uncertainty predictions, the LLM extracts additional context to assess sepsis-mimics, improving accuracy. Evaluated on 2500 patient encounters, COMPOSER-LLM achieved a sensitivity of 72.1%, positive predictive value of 52.9%, F-1 score of 61.0%, and 0.0087 false alarms per patient hour, outperforming the standalone COMPOSER model. Prospective validation yielded similar results. Manual chart review found 62% of false positives had bacterial infections, demonstrating potential clinical utility. Our findings suggest that integrating LLMs with traditional models can enhance predictive performance by leveraging unstructured data, representing a significant advance in healthcare analytics. 
    more » « less
  2. We conduct a thorough study to diagnose the behaviors of pre-trained language encoders (ELMo, BERT, and RoBERTa) when confronted with natural grammatical errors. Specifically, we collect real grammatical errors from non-native speakers and conduct adversarial attacks to simulate these errors on clean text data. We use this approach to facilitate debugging models on downstream applications. Results confirm that the performance of all tested models is affected but the degree of impact varies. To interpret model behaviors, we further design a linguistic acceptability task to reveal their abilities in identifying ungrammatical sentences and the position of errors. We find that fixed contextual encoders with a simple classifier trained on the prediction of sentence correctness are able to locate error positions. We also design a cloze test for BERT and discover that BERT captures the interaction between errors and specific tokens in context. Our results shed light on understanding the robustness and behaviors of language encoders against grammatical errors. 
    more » « less
  3. Abstract Background Social and behavioral determinants of health (SBDH) are environmental and behavioral factors that often impede disease management and result in sexually transmitted infections. Despite their importance, SBDH are inconsistently documented in electronic health records (EHRs) and typically collected only in an unstructured format. Evidence suggests that structured data elements present in EHRs can contribute further to identify SBDH in the patient record. Objective Explore the automated inference of both the presence of SBDH documentation and individual SBDH risk factors in patient records. Compare the relative ability of clinical notes and structured EHR data, such as laboratory measurements and diagnoses, to support inference. Methods We attempt to infer the presence of SBDH documentation in patient records, as well as patient status of 11 SBDH, including alcohol abuse, homelessness, and sexual orientation. We compare classification performance when considering clinical notes only, structured data only, and notes and structured data together. We perform an error analysis across several SBDH risk factors. Results Classification models inferring the presence of SBDH documentation achieved good performance (F1 score: 92.7–78.7; F1 considered as the primary evaluation metric). Performance was variable for models inferring patient SBDH risk status; results ranged from F1 = 82.7 for LGBT (lesbian, gay, bisexual, and transgender) status to F1 = 28.5 for intravenous drug use. Error analysis demonstrated that lexical diversity and documentation of historical SBDH status challenge inference of patient SBDH status. Three of five classifiers inferring topic-specific SBDH documentation and 10 of 11 patient SBDH status classifiers achieved highest performance when trained using both clinical notes and structured data. Conclusion Our findings suggest that combining clinical free-text notes and structured data provide the best approach in classifying patient SBDH status. Inferring patient SBDH status is most challenging among SBDH with low prevalence and high lexical diversity. 
    more » « less
  4. Maintaining data quality is a fundamental requirement for any successful and long-term data management. Providing high-quality, reliable, and statistically sound data is a primary goal for clinical research informatics. In addition, effective data governance and management are essential to ensuring accurate data counts, reports, and validation. As a crucial step of the clinical research process, it is important to establish and maintain organization-wide standards for data quality management to ensure consistency across all systems designed primarily for cohort identification, allowing users to perform an enterprise-wide search on a clinical research data repository to determine the existence of a set of patients meeting certain inclusion or exclusion criteria. Some of the clinical research tools are referred to as de-identified data tools. Assessing and improving the quality of data used by clinical research informatics tools are both important and difficult tasks. For an increasing number of users who rely on information as one of their most important assets, enforcing high data quality levels represents a strategic investment to preserve the value of the data. In clinical research informatics, better data quality translates into better research results and better patient care. However, achieving high-quality data standards is a major task because of the variety of ways that errors might be introduced in a system and the difficulty of correcting them systematically. Problems with data quality tend to fall into two categories. The first category is related to inconsistency among data resources such as format, syntax, and semantic inconsistencies. The second category is related to poor ETL and data mapping processes. In this paper, we describe a real-life case study on assessing and improving the data quality at one of healthcare organizations. This paper compares between the results obtained from two de-identified data systems i2b2, and Epic Slicedicer, and discuss the data quality dimensions' specific to the clinical research informatics context, and the possible data quality issues between the de-identified systems. This work in paper aims to propose steps/rules for maintaining the data quality among different systems to help data managers, information systems teams, and informaticists at any health care organization to monitor and sustain data quality as part of their business intelligence, data governance, and data democratization processes. 
    more » « less
  5. Uncovering and fixing errors in biomedical terminologies is essential so that they provide accurate knowledge to downstream applications that rely on them. Non-lattice-based methods have been applied to identify various kinds of inconsistencies in different biomedical terminologies. In previous work, we have introduced two inference-based approaches that were applied in an exhaustive manner to audit hierarchical relations in the Gene Ontology: (1) Lexical-based inference framework, and (2) Subsumption-based sub-term inference framework. However, it is unclear how effective these exhaustive approaches perform compared with their corresponding non-lattice-based approaches. Therefore, in this paper, we implement the non-lattice versions of these two exhaustive approaches, and perform a comprehensive comparison between non-lattice-based and exhaustive approaches to audit the Gene Ontology. The domain expert evaluations performed for the two exhaustive approaches are leveraged to evaluate the non-lattice versions. The results indicate that the non-lattice versions have increased precision than their exhaustive counterparts even though they do not capture some of the potential inconsistencies that the exhaustive approaches identify. 
    more » « less