In the past decade, Huagapo and Pacupahuain Caves in the Central Peruvian Andes have become sources of speleothem oxygen isotope (δ18O) paleoclimate records. These studies identify the South American Summer Monsoon (SASM) as the main climate system controlling δ18O variability. While this interpretation is verified through inter-proxy record comparisons on millennial scales, interpretation of the high-resolution variability within these records is limited by a lack of modern proxy calibration studies at these sites. Here we present results from a modern cave monitoring study undertaken to address the controls on the δ18O values of precipitation at these sites and how surface and in-cave processes affect the δ18O value of speleothem calcite. Speleothem calcite δ18O values reflect an integrated signal of atmospheric processes (e.g., rainout, Raleigh distillation, upstream moisture recycling, changes in moisture source), evaporation and mixing during infiltration in the soil and epikarst, and in-cave processes such as degassing and evaporation. In consideration of these factors, we compare isotope trends in precipitation, cave drip water and modern farmed calcite from the two cave sites. We find that precipitationδ18O values during peak monsoon activity (January -February) shows considerable inter-annual variation with averages of -16.7‰ for 2020, -18.5‰ for 2021 and -13.8‰ in 2022. We investigate the source of this variability in regional atmospheric circulation patterns using weather station data and back trajectories. The mean annual precipitation (MAP) from outside Huagapo Cave is δ18O = -15.5+/- 6‰, while seasonal samples of drip water δ18O = -14.5+/- 1‰, are offset from MAP possibly due to evaporation during infiltration. Cave drip waterδ18O has low variability over inter-annual and seasonal timescales indicating homogenization in the epikarst. Using geochemical and sensor data (e.g. cave relative humidity, temperature, and drip rate) as inputs for a karst based forward model, we simulate modern speleothem δ18O to quantitatively assess the combined effects of hydroclimate processes integration to the isotope record. 
                        more » 
                        « less   
                    
                            
                            Cryogenic ridges: a new speleothem type
                        
                    
    
            Cryogenic cave carbonates have been described from several formerly or presently glaciated karst caves. In most of these occurrences, they precipitated as loose grains or aggregates with various morphologies and sizes. Here, we report on a new speleothem type (cryogenic ridges) identified in Sohodoalele Mici Cave (SW Romania) within a large chamber near the entrance shaft. This study was motivated by the presence of a network of calcite ridges over the stalactites’ surface and by the observation that during winter, these speleothems are covered by a thin ice layer. The higher δ18O (−3.5 to –1‰) and δ13C (0 to 7‰) values found in the calcite ridges relative to δ18O (–7.5 to –4‰) and δ13C (–9 to –2‰) values of calcite from the inner stalactite indicate that the ridges are of cryogenic origin and formed during relatively rapid carbonate precipitation associated with evaporative cooling and freezing of the water. Four U-series ages suggest that the stalactites with ridges formed during cold winters of the Holocene, when cave air temperatures dropped below freezing. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2040066
- PAR ID:
- 10634298
- Publisher / Repository:
- . International Journal of Speleology
- Date Published:
- Journal Name:
- International Journal of Speleology
- Volume:
- 52
- Issue:
- 1
- ISSN:
- 0392-6672
- Page Range / eLocation ID:
- 1 to 8
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Recent studies have improved our understanding of how karst hydrology impacts variability in modern cave drip water δ18O values and the resultant calcite δ18O values of speleothem paleoclimate records. Monitoring of cave drip water isotope values reveals that flow path controls the differences in drip site values in many caves worldwide. We present a case study of three caves from the central Peruvian Andes where isotopic differences between sites are informed by monitoring data. Relative humidity at Huagapo and Pacupahuain caves is 100% year-round with no fluctuations, so any isotopic fractionation of waters must occur in the vadose zone or epikarst. Precipitation isotope data from the 2022-2023 year show differences with elevation, where annual mean precipitation at 3600 masl (meters above sea level) is, on average, 2‰ greater than precipitation at 4100 masl. Cave drip water was sampled four times (April, June, and November 2022, and June 2023). Average drip water δ18O values were lowest at the high elevation (4004 masl) cave of Antipayargunan -14.7 ± 2.5‰; similar values were found at the lowest elevation (3600 masl) cave of Huagapo -14.5 ± 1.2‰. Pacupahuain cave had the highest values with an average of -13.9 ± 1.7‰. The higher values at Pacupahuain Cave (3800 masl) may be attributed to higher evaporation due to vadose zone residence time, a lower average recharge elevation for this catchment and/or potential contribution from a sinkhole lake (Lago Gallerina) above the cave. Huagapo Cave is large, and sampling sites over 1 km in distance show that the δ18O value of drip water increases by 0.5‰ with increasing distance from the cave entrance. Drip counting sensor data and a continuous SYP autosampler at Pacupahuain Cave provide a time series showing that drip rate peaks during the monsoon season. More specifically, the data show a maximum of 2 ‰ difference in drip water at the autosampler site between the end of the wet season in May and the middle of the dry season in August – at which point drips cease for six months. Seasonal recharge dominates most drip water sites, while drip counters show evidence for fracture and diffuse flow-dominated drip sites. These data suggest that, similar to other cave sites, flow path is important for intra-cave differences in drip water isotope values. However, we find that karst hydrology plays a more dominant role between caves.more » « less
- 
            NA (Ed.)Speleothem paleoclimate records from the Peruvian Andes have been interpreted to reflect the strength of the South American monsoon. While these interpretations have been verified through comparison with other regional and global climate records, the mechanics of the cave environment that facilitate the preservation of this signal with such consistency remain unstudied. Here, we present four years of environmental data from Huagapo and Pacupahuain cave, and one year from Antipayarguna cave. The data reveal that the cave environment is very stable with little to no change in temperature and 100% relative humidity year-round. This stability in cave air is juxtaposed with the monsoonal drip water pulse that increases drip rates over 40 times on average across all seven monitored drip sites. Compared to the amount-weighted precipitation average δ18Oprecip value, the cave drip water δ18ODW values are evaporatively 18O enriched during infiltration through the soil/epikarst. As the monsoonal precipitation pulse fades and drip rates decrease, changes in the drip water chemistry (trace elements Mg/Ca and Sr/Ca, dissolved inorganic carbon δ13CDW, and δ18ODW values) indicate that prior calcite precipi- tation (PCP) drives the trace element and δ13CDW variability. The δ13Cc and δ18Oc values of farmed slide calcite are highly variable. However, high drip rate and lower cave air pCO2 during the monsoon combine to increase calcite precipitation rates. This causes speleothem records from these caves to be weighted toward annual monsoon conditions. Calcite isotope values from actively growing stalagmite tops support this finding. These results suggest that speleothems from these caves are sensitive to changes in monsoon precipitation amount, because it determines the duration of the monsoon drip water pulse, and therein, the extent of dry season PCP. Further, these data indicate that heterogeneity in the dolomitic limestone massif causes offsets between the carbon isotopes and trace metal concentrations between the caves, highlighting the need to normalize these datasets when chronology-stacking these proxies.more » « less
- 
            The Chinese Loess Plateau (CLP) is located in northern China, a region climatically dominated by the East Asian monsoon. Speleothem records from this region are crucial to fully understand the variability of the East Asian summer monsoon (EASM) and reconcile the disparity seen between loess records and speleothem δ18O records for the EASM. Here, we present an absolutely dated stalagmite isotope record spanning most of Marine Isotope Stage (MIS) 5 to MIS 3 from Xiaotian Cave, southeast CLP. The Xiaotian speleothem δ18O record is dominated by precessional variations and punctuated by notable millennial‐scale oscillations; in particular, the δ18O values in MIS 5e, 5c and 5a were in the same range, consistent with other speleothem δ18O records from the EASM region within quoted errors, verifying the difference between speleothem δ18O and loess records (e.g. magnetic susceptibility) and the proposition that those two archives may record different aspects of the EASM changes. The similar values in MIS 5e, 5c and 5a observed from the speleothem δ18O records in EASM regions, incompatible with the relatively higher North Hemisphere Summer Insolation (NHSI) during MIS 5e, were probably caused by an equivalent or even increased contribution of 18O‐enriched moisture from the South China Sea and North Pacific, implying that an El Niño‐like state existed during MIS 5e. The Xiaotian δ18O values increased abruptly at ~121.7 thousand years (kyr) before the present (bp, present refers to ad 1950), consistent with the trend seen in previously reported Chinese speleothem δ18O records, indicating an abrupt regime shift in atmospheric circulations or hydroclimate conditions in the Asian monsoon systems. It cannot be definitely ruled out that an increase in sea ice extent in the northern North Atlantic, responding to a decrease of NHSI, reached a threshold to have led to abrupt changes in the Asian summer monsoon (ASM) through rapid shifts in the position of circulation of the westerlies and/or in the position of Intertropical Convergence Zone (ITCZ). Here, we hypothesized that sea surface cooling in the tropical Indian and Pacific Ocean caused by the decreased summer insolation reached a threshold that eventually resulted in an abrupt shift to more positive precipitation δ18O, either through weakened convection over the tropical ocean, or through abrupt shifts in moisture transport and cycling of tropical moisture sources for the ASM. The Xiaotian speleothem δ18O record also shows centennial‐scale variability with amplitude up to 3‰ within MIS 5e. These changes are similar to variations recorded by the speleothem δ18O record from Tianmen Cave on the south‐central Tibetan Plateau and Shangxiaofeng Cave in Shandong Province, northern China, suggesting a heightened sensitivity of precipitation δ18O to climate changes at the marginal zone of the ASM even during the warm and humid MIS 5e interglacial. Climatic oscillations during MIS 5e appear to be comparable to those typical of the Holocene, implying rather unstable climate conditions during the Last Interglacial.more » « less
- 
            The δ18O of carbonate minerals that formed at Earth’s surface is widely used to investigate paleoclimates and paleo-elevations. However, a multitude of hydrologic processes can affect δ18O values, including mixing, evaporation, distillation of parent waters, and carbonate growth temperatures. We combined traditional carbon and oxygen isotope analyses with clumped (Δ47) and triple oxygen isotopes (Δ′17O) analyses in oyster shells (Acutostrea idriaensis) of the Goler Formation in southern California (USA) to obtain insights into surface temperatures and δ18O values of meteoric waters during the early Eocene hothouse climate. The Δ47-derived temperatures ranged from 9 °C to 20 °C. We found a correlation between the δ18O of growth water (δ18Ogw) (calculated using Δ47 temperatures and δ18O of carbonate) and the δ13C values of shells. The Δ′17O values of shell growth waters (0.006‰–0.013‰ relative to Vienna standard mean ocean water–standard light Antarctic precipitation [VSMOW-SLAP]) calculated from Δ′17O of carbonate (–0.087‰ to –0.078‰ VSMOW-SLAP) were lower than typical meteoric waters. These isotopic compositions are consistent with oyster habitation in an estuary. We present a new triple oxygen isotope mixing model to estimate the δ18O value of freshwater supplying the estuary (δ18Ofw). The reconstructed δ18Ofw of –11.3‰ to –14.7‰ (VSMOW) is significantly lower than the δ18Ogw of –4.4‰ to –9.9‰ that would have been calculated using “only” Δ47 and δ18O values of carbonate. This δ18Ofw estimate supports paleogeographic reconstructions of a Paleogene river fed by high-elevation catchments of the paleo–southern Sierra Nevada. Our study highlights the potential for paired Δ47 and Δ′17O analyses to improve reconstructions of meteoric water δ18O, with implications for understanding ancient climates and elevations.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    