ABSTRACT We study the formation of ultradiffuse galaxies (UDGs) using the cosmological hydrodynamical simulation TNG50 of the Illustris-TNG suite. We define UDGs as dwarf galaxies in the stellar mass range $$\rm {7.5 \le log (M_{\star } / {\rm M}_{\odot }) \le 9 }$$ that are in the 5 per cent most extended tail of the simulated mass–size relation. This results in a sample of UDGs with half-mass radii $$\rm {r_{h \star } \gtrsim 2 \ kpc}$$ and surface brightness between $$\rm {24.5}$$ and $$\rm {28 \ mag \ arcsec^{-2}}$$, similar to definitions of UDGs in observations. The large cosmological volume in TNG50 allows for a comparison of UDGs properties in different environments, from the field to galaxy clusters with virial mass $$\rm {M_{200} \sim 2 \times 10^{14} ~ {\rm M}_{\odot }}$$. All UDGs in our sample have dwarf-mass haloes ($$\rm {M_{200}\sim 10^{11} ~ {\rm M}_{\odot } }$$) and show the same environmental trends as normal dwarfs: field UDGs are star-forming and blue while satellite UDGs are typically quiescent and red. The TNG50 simulation predicts UDGs that populate preferentially higher spin haloes and more massive haloes at fixed $$\rm {M_{\star }}$$ compared to non-UDG dwarfs. This applies also to most satellite UDGs, which are actually ‘born’ UDGs in the field and infall into groups and clusters without significant changes to their size. We find, however, a small subset of satellite UDGs ($$\lesssim 10~{{\ \rm per\ cent}}$$) with present-day stellar size a factor ≥1.5 larger than at infall, confirming that tidal effects, particularly in the lower mass dwarfs, are also a viable formation mechanism for some of these dwarfs, although sub-dominant in this simulation. 
                        more » 
                        « less   
                    This content will become publicly available on December 5, 2026
                            
                            On the dark matter content of ultra-diffuse galaxies
                        
                    
    
            I compare the dark matter content within stellar half-mass radius expected in a $$\Lambda$$CDM-based galaxy formation model with existing observational estimates for the observed dwarf satellites of the Milky Way and ultra-diffuse galaxies (UDGs). The model reproduces the main properties and scaling relations of dwarf galaxies, in particular their stellar mass-size relation. I show that the model also reproduces the relation between the dark matter mass within the half-mass radius, $$M_{\rm dm}( 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2408267
- PAR ID:
- 10634348
- Publisher / Repository:
- The Open Journal of Astrophysics
- Date Published:
- Journal Name:
- Open Journal of Astrophysics
- ISSN:
- 2565-6120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            ABSTRACT Within lambda cold dark matter ($$\Lambda$$CDM), dwarf galaxies like the Large Magellanic Cloud (LMC) are expected to host numerous dark matter subhaloes, several of which should host faint dwarf companions. Recent Gaia proper motions confirm new members of the LMC system in addition to the previously known SMC, including two classical dwarf galaxies ($$M_\ast$$\gt 10^5$$ M$$_{\odot }$$; Carina and Fornax) as well as several ultrafaint dwarfs (Car2, Car3, Hor1, and Hyd1). We use the Feedback In Realistic Environments (FIRE) simulations to study the dark and luminous (down to ultrafaint masses, $$M_\ast$$\sim$$6$$\times 10^ {3}$$ M$$_{\odot }$$) substructure population of isolated LMC-mass hosts ($$M_{\text{200m}}$$ = 1–3$$\times 10^ {11}$$ M$$_{\odot }$$) and place the Gaia + DES results in a cosmological context. By comparing number counts of subhaloes in simulations with and without baryons, we find that, within 0.2 $$r_{\text{200m}}$$, LMC-mass hosts deplete $$\sim$$30 per cent of their substructure, significantly lower than the $$\sim$$70 per cent of substructure depleted by Milky Way (MW) mass hosts. For our highest resolution runs ($$m_\text{bary}$$ = 880 M$$_{\odot }$$), $$\sim 5\!-\!10$$ subhaloes form galaxies with $$M_\ast$$\ge 10^{4}$$ M$$_{\odot }$$ , in agreement with the seven observationally inferred pre-infall LMC companions. However, we find steeper simulated luminosity functions than observed, hinting at observation incompleteness at the faint end. The predicted DM content for classical satellites in FIRE agrees with observed estimates for Carina and Fornax, supporting the case for an LMC association. We predict that tidal stripping within the LMC potential lowers the inner dark matter density of ultrafaint companions of the LMC. Thus, in addition to their orbital consistency, the low densities of dwarfs Car2, Hyd1, and Hyd2 reinforce their likelihood of Magellanic association.more » « less
- 
            ABSTRACT We use analytical and N-body methods to study the capture of field stars by gravitating substructures moving across a galactic environment. The majority of stars captured by a substructure move on temporarily bound orbits that are lost to galactic tides after a few orbital revolutions. In numerical experiments where a substructure model is immersed into a sea of field particles on a circular orbit, we find a population of particles that remain bound to the substructure potential for indefinitely long times. This population is absent from substructure models, initially placed outside the galaxy on an eccentric orbit. We show that gravitational capture is most efficient in dwarf spheroidal galaxies (dSphs) on account of their low velocity dispersions and high stellar phase-space densities. In these galaxies, ‘dark’ sub-subhaloes, which do not experience in situ star formation, may capture field stars and become visible as stellar overdensities with unusual properties: (i) they would have a large size for their luminosity, (ii) contain stellar populations indistinguishable from the host galaxy, and (iii) exhibit dark matter (DM)-dominated mass-to-light ratios. We discuss the nature of several ‘anomalous’ stellar systems reported as star clusters in the Fornax and Eridanus II dSphs that exhibit some of these characteristics. DM sub-subhaloes with a mass function $${\rm d}N/{\rm d}M_\bullet \sim M_\bullet ^{-\alpha }$$ are expected to generate stellar systems with a luminosity function, $${\rm d}N/{\rm d}M_\star \sim M_\star ^{-\beta }$$, where $$\beta =(2\alpha +1)/3=1.6$$ for $$\alpha =1.9$$. Detecting and characterizing these objects in dSphs would provide unprecedented constraints on the particle mass and cross-section of a large range of DM particle candidates.more » « less
- 
            null (Ed.)ABSTRACT We present the first set of cosmological baryonic zoom-in simulations of galaxies including dissipative self-interacting dark matter (dSIDM). These simulations utilize the Feedback In Realistic Environments galaxy formation physics, but allow the dark matter to have dissipative self-interactions analogous to standard model forces, parametrized by the self-interaction cross-section per unit mass, (σ/m), and the dimensionless degree of dissipation, 0 < fdiss < 1. We survey this parameter space, including constant and velocity-dependent cross-sections, and focus on structural and kinematic properties of dwarf galaxies with $$M_{\rm halo} \sim 10^{10-11}{\, \rm M_\odot }$$ and $$M_{\ast } \sim 10^{5-8}{\, \rm M_\odot }$$. Central density profiles (parametrized as ρ ∝ rα) of simulated dwarfs become cuspy when $$(\sigma /m)_{\rm eff} \gtrsim 0.1\, {\rm cm^{2}\, g^{-1}}$$ (and fdiss = 0.5 as fiducial). The power-law slopes asymptote to α ≈ −1.5 in low-mass dwarfs independent of cross-section, which arises from a dark matter ‘cooling flow’. Through comparisons with dark matter only simulations, we find the profile in this regime is insensitive to the inclusion of baryons. However, when $$(\sigma /m)_{\rm eff} \ll 0.1\, {\rm cm^{2}\, g^{-1}}$$, baryonic effects can produce cored density profiles comparable to non-dissipative cold dark matter (CDM) runs but at smaller radii. Simulated galaxies with $$(\sigma /m) \gtrsim 10\, {\rm cm^{2}\, g^{-1}}$$ and the fiducial fdiss develop significant coherent rotation of dark matter, accompanied by halo deformation, but this is unlike the well-defined thin ‘dark discs’ often attributed to baryon-like dSIDM. The density profiles in this high cross-section model exhibit lower normalizations given the onset of halo deformation. For our surveyed dSIDM parameters, halo masses and galaxy stellar masses do not show appreciable difference from CDM, but dark matter kinematics and halo concentrations/shapes can differ.more » « less
- 
            ABSTRACT In recent years, cosmological hydrodynamical simulations have proven their utility as key interpretative tools in the study of galaxy formation and evolution. In this work, we present a comparative analysis of the baryon cycle in three publicly available, leading cosmological simulation suites: EAGLE, IllustrisTNG, and SIMBA. While these simulations broadly agree in terms of their predictions for the stellar mass content and star formation rates of galaxies at $$z\approx 0$$, they achieve this result for markedly different reasons. In EAGLE and SIMBA, we demonstrate that at low halo masses ($$M_{\rm 200c}\lesssim 10^{11.5}\, \mathrm{M}_{\odot }$$), stellar feedback (SF)-driven outflows can reach far beyond the scale of the halo, extending up to $$2\!-\!3\times R_{\rm 200c}$$. In contrast, in TNG, SF-driven outflows, while stronger at the scale of the interstellar medium, recycle within the circumgalactic medium (within $$R_{\rm 200c}$$). We find that active galactic nucleus (AGN)-driven outflows in SIMBA are notably potent, reaching several times $$R_{\rm 200c}$$ even at halo masses up to $$M_{\rm 200c}\approx 10^{13.5}\, \mathrm{M}_{\odot }$$. In both TNG and EAGLE, AGN feedback can eject gas beyond $$R_{\rm 200c}$$ at this mass scale, but seldom beyond $$2\!-\!3\times R_{\rm 200c}$$. We find that the scale of feedback-driven outflows can be directly linked with the prevention of cosmological inflow, as well as the total baryon fraction of haloes within $$R_{\rm 200c}$$. This work lays the foundation to develop targeted observational tests that can discriminate between feedback scenarios, and inform subgrid feedback models in the next generation of simulations.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
